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So far in class, we have only considered the traditional framework for algorithm design, as follows: we
are given an input I, are allowed to perform some computation (perhaps restricted in the amount of time),
and then produce an output O. For many problems, this is an appropriate framework. However, there are
also many cases in the real world in which the algorithm does not know the entire input yet, but still has to
make partial decisions about the output.

A natural example is obtained by looking again at one of our applications of weighted interval scheduling.
Recall that we were given a list of potential jobs Ji, where each job had a start time of si, a finish time
of ti, and a reward of ri. For instance, these could be job offers of ri dollars for working from time si to
ti. The goal is then to select a set of non-overlapping jobs of maximum total profit. In the real world, we
would frequently encounter the situation where the job offers come in one by one, and must be accepted or
rejected right away. That is, when the first offer of $20 for working from 1–3pm arrives, we must decide
whether to take it without knowing what (if any) future offers we get. It is easy to see that we could end up
making horrendously bad decisions: if we accept the offer, then it could turn out that we get another offer
of $100,000 for the same time interval, which we cannot accept any more. And if we reject the offer, it may
be the last offer we ever get. Either way, we could do terribly as a result of lacking clairvoyance. So the
problem takes on a distinctly different flavor.

Algorithms which have to make their decisions gradually as data arrives are called online algorithms.
There are many problems one naturally encounters in this type of setting. Here are a few additional ones,
besides many different variations of scheduling and job selection:

1. Response to events or emergencies: Here, we have several “servers” (think of robots, or police cars).
Events come in one by one, and we must send a server to each event. Preferably, the server shouldn’t
have to travel too far to get to the event. If we knew in advance about future events, we would know
which of the servers to send, so as to keep others close to where they will be useful next. This problem
is called the k-server problem (or also metrical task systems).

2. Data structures (cache, memory, trees, lists): As requests for data come in, we want to keep data that
is about to be accessed in places where it can be accessed fast. For instance, the cache should contain
frequently (in the future) accessed items. Unfortunately, we do not know which items will be accessed
in the future. But the data structure should be updated online anyway.

3. Traffic routing in networks: As requests (si, ti) for connections in a network arrive, we have to decide
on a path to route the si-ti traffic. Since we don’t know which will be future requests, we may end
up congesting edges that are very crucial for other pairs. But in the real world, requests have to be
accommodated without knowing future ones.

4. Network design: We sometimes will gradually want to add edges to our network to connect new nodes
or new requests, without knowing which other ones will arrive in the future. Thus, we may end up
building a suboptimal communication infrastructure, compared to what could have been built knowing
all communication requests.

In all these cases (and many others), we are naturally in a scenario where any algorithm will have to
make suboptimal decisions at times. Notice that this brings up an interesting contrast with approximation
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algorithms we studied earlier. In approximation algorithms, we are sub-optimal because we don’t have
enough resources (usually time, sometimes space) to compute the best solution. In online algorithms, we are
sub-optimal because we don’t know the future, and thus don’t have the entire input available.

Analogous to the approximation ratio for approximation algorithms, we define the competitive ratio for
online algorithms to capture how much worse the algorithm does compared to one that knows about the
future.

Definition 1 Let OPT be the optimum offline algorithm (knowing about the future), and ALG another
algorithm. cOPT and cALG denote the costs incurred by those two algorithms.

1. ALG is b-competitive if there exists a constant α such that for all inputs I, we have cALG(I) ≤
b · cOPT(I) + α.

2. ALG is strictly b-competitive if it is b-competitive with the constant α ≤ 0.

3. The competitive ratio of ALG is the infimum over all b such that ALG is b-competitive.

The constant α can be considered a “startup cost” of the algorithm. Frequently, we are more interested
in cases where we can get away with no startup cost, which motivates the definition of strictly b-competitive
algorithms. The competitive ratio needs to be defined as the infimum (rather than the minimum) because
it is conceivable that an algorithm is 2 + ε competitive for each ε, but not 2-competitive. We would still call
its competitive ratio 2 in that case.

For online algorithms, we can frequently distinguish two natural types of parameters for inputs: one the
size of the underlying structure and the other the length of the “request sequence”. For instance, we could
think about a constant number k of robots, but a growing number t of requests. Or a constant size (n, m)
of a graph, but a growing number of routing requests. Or a constant cache or memory size, but a growing
number of requests for individual data items or pages. Whenever this is the case, the constant b for the
competitive ratio is allowed to depend on the number that is constant. However, b should not be a function
of the number t of requests in the sequence.

1 The Ski Rental Problem

As a first concrete example of an online problem and its solution, we will look at the Ski Rental problem
(which abstracts a lot of decisions between renting or buying, and similar investments). In the Ski Rental
problem, we assume that we are going skiing for some number d of days total. Each day, we can either rent
skis for R dollars, or buy them for B > R dollars. Once we have bought the skis, we can use them for free
forever afterwards.

As an offline problem, this is trivial: if dR < B, then rent the skis for all d days, otherwise buy them
the first day and reuse them. The twist is that we don’t know the number d of days in advance. Instead, at
the end of each day, it is decided whether we go skiing again. (For instance, we could lose interest, or get
seriously injured, or other scenarios may apply.) Thus, the algorithm has to make decisions about whether
to buy or rent without knowing how many more days of skiing are coming.

In this case, the algorithm could make some terrible decisions. If we buy on the first day, we might lose
interest immediately, and have spent much more money than necessary. The same will apply for most early
days. On the other hand, if we keep renting for a long time, it would have been much cheaper to buy right
away. A good algorithm should somehow trade off between the two.

First off, we notice that any deterministic algorithm can be described as “rent for d days, then buy”, for
some d. For as soon as the algorithm buys the skis, it can reuse them for free, so no more decisions need
to be made. And there is no additional information beyond the number of days elapsed that the algorithm
has available. Executing this algorithm gives us a cost of B + dR. We next want to analyze the competitive
ratio of this algorithm. We will obtain it by dividing B +dR by the cost of the optimum algorithm. In order
to know that cost, we need to know the true number of days of skiing. Here, we can assume without loss of
generality that it is d + 1. For if it were larger, then the optimum may become more expensive, while the
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cost of the algorithm does not change. So the worst case is achieved when the number of days is d + 1. In
that case, the optimum cost is min(B, (d + 1)R), and the ratio is thus

B+dR
min(B,(d+1)R) = 1 + max(dR

B , B−R
(d+1)R ).

The first term in the maximum is monotone increasing in d, and the second monotone decreasing in d.
Hence, the best ratio is achieved for the d for which the two terms are equal. For larger d, it would be
exceeded by the first term, and for smaller d by the second. Hence, we solve dR

B = B−R
(d+1)R . This can be

rearranged to d(d+1) = B
R (B

R −1), and hence is solved by d = B
R −1. This suggests that the optimum online

algorithm is to buy on day number B
R . Or, thinking about it otherwise, we buy on the day when renting

again would make the total rental cost so far exceed the purchase cost. Substituting the value of d back into
the expression for the competitive ratio gives us a ratio of 2− R

B . So this strategy is strictly 2-competitive.
We treated B

R as an integer in defining the online algorithm as “buy on day number B
R”. If it is not, then

the optimum algorithm is either the version rounded up or rounded down.
In the discussion, we assumed that the decision of when we would stop skiing was made in response to

our purchase decision. Thus, the world is adversarial, and the adversary gets to react to the choices made
by the algorithm. At first, this appears to go against the description of having a complete worst-case input,
which was shown to the algorithm one by one. However, we should notice that the adversary does not in
fact need to react to what the algorithm does. So long as it knows the algorithm, and the algorithm is
deterministic, it can simulate it on its own, and decide on the entire worst-case input ahead of time, being
assured that the actual execution will match the simulation. Notice that this makes the adversary quite
powerful. However, this approach is motivated by our desire to design algorithms that will work well even
if everything goes wrong. It does not imply a philosophical judgment about whether the world is indeed
adversarial, but rather a design principle of guarding against even the worst possible coincidences.

Notice also that this illustrates the power of randomization. If the algorithm generates random bits for its
decisions (for instance, choosing randomly when to buy the skis), then the adversary cannot be assured that
any two executions will behave the same, and cannot design as easily an input on which the algorithm will
always incur high cost. For instance, we showed above that no deterministic online algorithm can achieve a
competitive ratio better than 2 − R

B . It is not too difficult to show that the expected cost of a randomized
ski rental algorithm can be better than this bound. Of course, if the adversary actually gets to observe the
coin flips, then it may be able to adapt its input accordingly. But for the most part, randomization is a good
way of improving the performance of the algorithm. We will not cover randomized algorithms in this class,
but an example of a randomized online algorithm is discussed in Chapter 13.8 of the textbook [3].

Finally, we should mention that while the competitive ratio is a natural measure of the performance
of an algorithm, it is not the only one. For instance, one could argue that once we reach day d, having
rented every day so far, the rental cost is really a sunk cost, and we should treat the problem as though
this were again the first day. This would lead to the strategy of always renting. Obviously, this does not
achieve a constant competitive ratio, but it does appear to be cheapest on a day-by-day basis. We will not
concern ourselves here with measures other than the competitive ratio, but it should be noticed that they
are frequently equally well motivated.

2 List Accessing

Among the first papers to study online algorithms was one by Sleator and Tarjan [5], studying algorithms
for online list accessing and paging. More generally, this falls into the area of self-organizing data structures,
which try to keep frequently accessed items cheaply accessible. A more complex such data structure are
Splay Trees.

Here, we focus on accessing the elements of a linked list. Specifically, if the ith element of the list is
accessed, then the cost incurred for this access is i. Thus, frequently accessed elements should be toward the
front of the list. The problem, of course, is that we do not know which items will be requested in the future.
In the absence of this knowledge, one could think of several natural online heuristics:
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1. The static heuristic does not rearrange the list at all. If we were to choose a static ordering, we
would likely want to sort the list by access frequencies. In fact, if all accesses were chosen randomly
according to a known frequency, then pre-sorting the list by decreasing frequencies would be an optimal
algorithm.

2. The move-to-front (MTF) heuristic always moves the most recently accessed element to the front of
the list.

3. The frequency-count (FC) heuristic keeps a count of the number of times fi each element i has been
accessed, and keeps the list sorted by decreasing fi.

4. The transposition (TRANS) heuristic always moves the most recently accessed element one position
forward, by swapping it with its neighbor.

5. One could come up with several other variants between MTF and TRANS, such as moving an element
halfway to the front, swapping it two positions forward, or other similar ideas.

In the early 1980s, these heuristics were analyzed mostly through experiments, or with probabilistic
analysis. These assumed certain distributions on the requests for elements (which were not known to the
online heuristic in advance), and compared the heuristics under those distributions. For instance, Rivest
[4] showed that if accesses are independently random with a given probability distribution p, then the total
expected cost of TRANS is at most that of MTF. However, experimental results (e.g., [1]) showed that MTF
performed significantly better than TRANS, and was at least competitive with FC.

Motivated by this discrepancy, Sleator and Tarjan proposed analyzing heuristics in terms of their com-
petitive ratio. They posited the following model: The request sequence is σ(1), σ(2), σ(3), . . .. The sequence
is of length t, but the value of t, as well as any values σ(j) for j > i, are not known to the algorithm in
round i. If σ(i) is in position k, then the access cost is k. Afterwards, the element can be moved forward
(closer to the front) for free. Additional rearrangements can be made at a cost of 1 per transposition of two
adjacent elements. No additional swaps can be made that involve non-adjacent elements.

While this model may seem somewhat arbitrary at first, it models fairly naturally the fact that once σ(i)
has been found in position k, the elements 1–k have already been searched, so inserting σ(i) anywhere in
between will not incur much additional cost. (It turns out that charging a constant for this move does not
alter the result.) Other elements, on the other hand, need to be found first to be swapped, and thus, such
transpositions are more expensive. Before we proceed to analyze MTF in this model, let us briefly look at
the competitive ratio of TRANS and FC.

1. For TRANS, we could have a sequence that always accesses the element currently last in the list. This
results in repeated swaps between the last two elements. The total cost of t such accesses is tn. On
the other hand, the optimum solution could move the two elements to the first two positions after
(or before) their first accesses, and incur a total cost of at most 2n + 2t. The 2n term is moving two
elements by n positions each, and the 2t term is accessing two elements a total of t times, each at cost
at most 2. Thus, the competitive ratio is at least tn

2(n+t) , which converges to n/2 as t → ∞. This is
clearly a very bad competitive ratio, as any algorithm will achieve ratio n.

2. For FC, the problem is that once frequencies have been counted, it adapts very slowly to new patterns.
For instance, assume that we choose k � n. The sequence accesses the first element k times, then the
second element k− 1 times, and so forth, and finally the nth element k + 1− n times. As a result, the
FC heuristic will never reorganize the list. Its total cost is thus

k + 2(k − 1) + 3(k − 2) + . . . + n(k + 1− n) ≥ (k − n) · n(n+1)
2 = Ω(kn2).

On the other hand, the optimum solution would move each element to the front when it is accessed
for the first time, and thus incurs cost at most n2 + nk = O(nk). The first term is moving n elements
forward at most n each, and the second term is accessing each of n elements at most k times each, at
cost 1. Thus, the competitive ratio is at least Ω(kn2)/O(nk) = Ω(n), i.e., also linear in the list size n.
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In light of these negative results, it is perhaps a bit surprising that the simple MTF heuristic has much
better competitive ratio.

Theorem 2 MTF is strictly 2-competitive. That is, for all request sequences σ, we have cMTF(σ) ≤
2cOPT(σ).

Proof. We define cMTF(i) and cOPT(i) as the costs incurred by MTF and OPT in the ith step. Thus,
cMTF(σ) =

∑t
i=1 cMTF(i), and cOPT(σ) =

∑t
i=1 cOPT(i). Ideally, we would like to show the inequality term

by term, i.e., show that cMTF(i) ≤ 2cOPT(i) for all i. But it is easy to see that this will not work: the
optimum solution could after the first step rearrange its list at great cost. Then, subsequent steps for MTF
will be significantly more expensive. Since a step-by-step comparison does not work, we need to take into
account the effect that an expensive current round has for future accesses. If an expensive access right now
means that future accesses will be cheaper, then we should apply a “discount” for comparison purposes.
This is exactly the idea of amortized analysis, which we already saw earlier in the class when looking at
Fibonacci Heaps.

To define this “discount” more formally, we observe that if the lists of OPT and MTF are identical, then
accesses to any element cost exactly the same, so not only will the factor 2 bound hold, but there will be
cost to spare. Thus, good moves by MTF are ones that make the lists more similar. Notice that those are
exactly the ones that are very expensive compared to OPT: if OPT had a cheap access, then the element
was close to the front. Thus, moving the element to the front will make the lists much more similar in this
case. We will measure similarity of the lists with a non-negative potential function φ(i). It will capture
numerically how similar the two lists are at the end of the ith access. When the lists are identical, φ(i) = 0
will hold. In order to grant a bonus to moves making the lists more similar, we define the amortized cost
c′MTF(i) := cMTF(i) + φ(i) − φ(i − 1). This makes the amortized cost cheaper whenever the lists became
more similar (and more expensive when they became more dissimilar).

By rearranging the definition, we obtain that cMTF(i) = c′MTF(i) + φ(i − 1) − φ(i), and thus the total
cost of MTF is∑t

i=1 cMTF(i) =
∑t

i=1(c
′
MTF(i) + φ(i− 1)− φ(i)) = φ(0)− φ(t) +

∑t
i=1 c′MTF(i) ≤

∑t
i=1 c′MTF(i).

The second equality holds because the series telescopes (all terms except the first φ(i−1) and the last −φ(i)
cancel out). The inequality follows because φ(0) = 0, and φ(t) ≥ 0. Thus, it will be sufficient to show that
the amortized cost satisfies c′MTF(i) ≤ 2cOPT(i), and indeed, that is what we will show.

Of course, we first need to define a potential function, since so far, all the discussion has been in the
abstract. Finding the right potential function for analyzing an online algorithm is frequently difficult, and
involves a lot of experimentation. Here, we want a function that measures how similar two orderings of a
list are. Several such measures exist. Letting pMTF(j) and pOPT(j) denote the positions in the list at which
element j is located, two natural candidates are the following:

1. Spearman’s Footrule:
∑

j |pOPT(j)−pMTF(j)| is the sum of distances between the positions in the two
lists, for all elements.

2. Kendall’s tau: |{(i, j) | pOPT(i) < pOPT(j) and pMTF(j) < pMTF(i)}| is the total number inversions,
i.e., the number of pairs of elements which are in one relative order in MTF’s list, and in the other
order in OPT’s list.

Both are natural measures (as are several others), and there is no a priori reason to prefer one over the
other. The only way to figure out which is the right potential function is to try and prove the algorithm
correct, and either succeed or fail. In this case, it turns out that Spearman’s Footrule does not work, while
Kendall’s tau does. Hence, from now on, we let φ(i) denote the Kendall tau distance between the two lists
after the ith access is over.

We now want to analyze the ith step, where element σ(i) is accessed. Assume that it is located in position
m in the MTF list, and in position k in the OPT list. Thus, the respective access costs are m and k. In
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addition, MTF moves σ(i) to the front, thus eliminating some inversions and creating others. Also, OPT
may move σ(i) forward, and perform some paid transpositions.

First, let us analyze the move that MTF makes. By moving σ(i) to the front, MTF eliminates all
inversions with elements which are behind position k in OPT’s list, but before position m in MTF’s list.
Suppose that there are v ≥ 0 of them. Then, the remaining m− 1− v elements preceding σ(i) in MTF’s list
must also precede σ(i) in OPT’s list. In particular, this proves that k ≥ m− v.

While the move to the front eliminates v inversions, it also may create some new ones. All of the m−1−v
elements that were previously before σ(i) in both of the lists are now still before σ(i) in OPT’s list, but
behind σ(i) in MTF’s list. Thus, the move has created m − 1 − v new inversions. Thus, the net change in
inversions is m− 1− 2v, and the total amortized cost incurred by MTF, summing both the actual cost and
the change in inversions, is m + (m− 1− 2v) = 2(m− v)− 1.

In addition, suppose that OPT makes f free moves forward, and p paid adjacent transpositions. Each
move forward actually eliminates one inversion for us. Each paid transposition can introduce at most one
new inversion. Thus, the total amortized cost is 2(m− v)− f − 1 + p ≤ 2(m− v + p) ≤ 2(k + p). The last
inequality holds because we proved above that k ≥ m − v. And 2(k + p) is exactly twice the cost incurred
by the optimum solution, so we proved that the inequality holds for each i.

One interesting question not discussed in this context is what the optimum offline solution (knowing the
future) actually looks like. It turns out that it is still open whether it can be computed in polynomial time.
Neither NP-hardness nor an optimal polynomial-time algorithm are known. Of course, we also just proved
that MTF is a 2-approximation algorithm.

Another interesting variation is to look at different cost structures. For instance, we could posit that
accessing the first m < n elements costs 1, while accessing the remaining elements costs C � 1. This would
naturally model a two-tiered memory structure such as cache vs. main memory, or main memory vs. external
memory. A lot of work has been done in this area on competitive paging strategies. Here, we can only scratch
the surface, but interested students may want to have a look at the textbook by Borodin and El-Yaniv [2].
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