Unbalanced Graph Cuts

Ara Hayrapetyan! *, David Kempe? **, Martin P4l ***, and Zoya Svitkina' f

! Dept. of Computer Science, Cornell University. {ara,zoya}@cs.cornell.edu
2 Dept. of Computer Science, University of Southern California. dkempe@usc.edu
3 DIMACS Center, Rutgers University. mpal@dimacs.rutgers.edu

Abstract. We introduce the MINIMUM-SIZE BOUNDED-CAPACITY CUT
(MINSBCC) problem, in which we are given a graph with an identified
source and seek to find a cut minimizing the number of nodes on the
source side, subject to the constraint that its capacity not exceed a pre-
scribed bound B. Besides being of interest in the study of graph cuts,
this problem arises in many practical settings, such as in epidemiology,
disaster control, military containment, as well as finding dense subgraphs
and communities in graphs.

In general, the MINSBCC problem is NP-complete. We present an ef-
ficient (%, ﬁ)—bicriteria approximation algorithm for any 0 < A < 1;
that is, the algorithm finds a cut of capacity at most %B7 leaving at most
ﬁ times more vertices on the source side than the optimal solution with
capacity B. In fact, the algorithm’s solution either violates the budget
constraint, or exceeds the optimal number of source-side nodes, but not
both. For graphs of bounded treewidth, we show that the problem with
unit weight nodes can be solved optimally in polynomial time, and when
the nodes have weights, approximated arbitrarily well by a PTAS.

1 Introduction

Graph cuts are among the most well-studied objects in theoretical computer sci-
ence. In the most pristine form of the problem, two given vertices s and ¢ have to
be separated by removing an edge set of minimum capacity. By a fundamental
result of Ford and Fulkerson [16], such an edge set can be found in polyno-
mial time. Since then, many problems have been shown to reduce to graph cut
problems, sometimes quite surprisingly (e.g. [19]). One way to view the Min-Cut
Problem is to think of “protecting” the sink node ¢ from the presumably harmful
node s by way of removing edges: the capacity of the cut then corresponds to
the cost of edge removals. This interpretation in turn suggests a very natural
variant of the graph cut problem: given a node s and a bound B on the total edge
removal cost, try to “protect” as many nodes from s as possible, while cutting
at most a total edge capacity of B. In other words, find an s-t cut of capacity at

* Supported in part by NSF grant CCR-0325453.
** Work done while supported by an NSF graduate fellowship.
*** Supported by NSF grant EIA 02-05116, and ONR grant N00014-98-1-0589.
f Supported in part by NSF grant CCR-0325453 and ONR. grant N00014-98-1-0589.



most B, minimizing the size of the s-side of the cut. This is the MINIMUM-SIZE
BOUNDED-CAPACITY CUT (MINSBCC) problem that we study.

Naturally, the MINSBCC problem has direct applications in the areas of
disaster, military, or crime containment. In all of these cases, a limited amount
of resources can be used to monitor or block the edges by which the disaster
could spread, or people could escape. At the same time, the area to which the
disaster is confined should be as small as possible. For instance, in the firefighter’s
problem [6], a fixed small number of firefighters must confine a fire to within a
small area, trying to minimize the value of the property and lives inside.

Perhaps even more importantly, the MINSBCC problem arises naturally in
the control of epidemic outbreaks. While traditional models of epidemics [4] have
ignored the network structure in order to model epidemic diseases via differential
equations, recent work by Eubank et al. [7,9], using highly realistic large-scale
simulations, has shown that the graph structure of the social contacts has a
significant impact on the spread of the epidemic, and crucially, on the type of
actions that most effectively contain the epidemic. If we assume that patient 0,
the first infected member of the network, is known, then the problem of choosing
which individuals to vaccinate in order to confine the epidemic to a small set of
people is exactly the node cut version of the MINSBCC problem.

Besides the obvious connections to the containment of damage or epidemics,
the MINSBCC problem can also be used for finding small dense subgraphs and
communities in graphs. Discovering communities in graphs has received much at-
tention recently, in the context of analyzing social networks and the World Wide
Web [14, 20]. It involves examining the link structure of the underlying graph so
as to extract a small set of nodes sharing a common property, usually expressed
by high internal connectivity, sometimes in combination with small expansion.
We show how to reduce the community finding problem to MINSBCC.

Our Results. Formally, we define the MINSBCC problem as follows. Given
an (undirected or directed) graph G = (V, E) with edge capacities c., source and
sink nodes s and ¢, as well as a total capacity bound (also called the budget) B,
we wish to find an s-t cut (S, 5),s € S of capacity no more than B, which leaves
as few nodes on the source side as possible. We will also consider a generalization
in which the nodes are assigned weights w,,, and the objective is to minimize the
total node weight ) ¢ w,, subject to the budget constraint. !

We show in Sections 2 and 4.2 that MINSBCC is NP-hard on general graphs
with uniform node weights, and on trees with non-uniform node weights. We
therefore develop two (%, ﬁ)—bicriteria approximation algorithms for MINS-
BCC, where 0 < A < 1. These algorithms, in polynomial time, find a cut (S, 5)
of capacity at most %B, such that the size of S is at most ﬁ times that of

S*, where (S*, S*) is the optimal cut of capacity at most B. The first algorithm
obtains this guarantee by a simple rounding of a linear programming relaxation
of MINSBCC. The second one bypasses solving the linear program by running

1 Some of our motivating examples and applications do not specify a sink; this can be
resolved by adding an isolated sink to the graph.



a single parametric maximum flow computation and is thus very efficient [17].
It also has a better guarantee: it outputs either a (%, 1)-approximation or a
(1, ﬁ)—approximation, thus violating at most one of the constraints by the cor-
responding factor. The analysis of this algorithm is based on the same linear
programming formulation of MINSBCC and its Lagrangian relaxation.

We then investigate the MINSBCC problem for graphs of bounded treewidth
in Section 3. We give a polynomial-time algorithm based on dynamic program-
ming to solve MINSBCC optimally for graphs of bounded treewidth with unit
node weights. We then extend the algorithm to a PTAS for general node weights.

Section 4 discusses the reductions from node cut and dense subgraph prob-
lems to MINSBCC. We conclude with directions for future work in Section 5.

Related Work. Minimum cuts have a long history of study and form part of
the bread-and-butter of everyday work in algorithms [1]. While minimum cuts
can be computed in polynomial time, additional constraints on the size of the
cut or on the relationship between its capacity and size (such as its density)
usually make the problem NP-hard.

Much recent attention has been given to the computation of sparse cuts,
partly due to their application in divide-and-conquer algorithms [24]. The sem-
inal work of Leighton and Rao [22] gave the first O(logn) approximation algo-
rithm for sparsest and balanced cut problems using region growing techniques.
This work was later extended by Garg, Vazirani, and Yannakakis [18]. In a recent
breakthrough result, the approximation factor for these problems was improved
to O(y/logn) by Arora, Rao, and Vazirani [2].

A problem similar to MINSBCC is studied by Feige et al. [11,12]: given a
number k, find an s-t cut (9, S) with |S| = k of minimum capacity. They obtain
an O(log® n) approximation algorithm in the general case [11], and improve the
approximation guarantees when k is small [12].

MINSBCC has a natural maximization version MAXSBCC, where the goal
is to maximize the size of the s-side of the cut instead of minimizing it, while still
obeying the capacity constraint. This problem was recently introduced by Svitk-
ina and Tardos [25]. Based on the work of Feige and Krauthgamer [11], Svitkina
and Tardos give an (O(log®n), 1)-bicriteria approximation which is used as a
black box to obtain an approximation algorithm for the min-max multiway cut
problem, in which one seeks a multicut minimizing the number of edges leaving
any one component. The techniques in [25] readily extend to an (O(log®n), 1)-
bicriteria approximation for the MINSBCC problem.

Recently, and independently of our work, Eubank, et al [8] also studied the
MINSBCC problem and gave a weaker (142X, 1+ %)-bicriteria approximation.

2 Bicriteria Approximation Algorithms

We first establish the NP-completeness of MINSBCC.

Proposition 1. The MINSBCC problem with arbitrary edge capacities and node
weights is NP-complete even when restricted to trees.



Proof. We give a reduction from KNAPSACK. Let the KNAPSACK instance
consist of items 1,...,n with sizes s1,...,s, and values aq,...,a,, and let the
total Knapsack size be B. We create a source s, a sink ¢, and a node v; for each
item 4. The node weight of v; is a;, and it is connected to the source by an edge
of capacity s;. The sink ¢ has weight 0, and is connected to v; by an edge of
capacity 0. The budget for the MINSBCC problem is B.

The capacity of any s-t cut is exactly the total size of the items on the ¢-side,
and minimizing the total node weight on the s-side is equivalent to maximizing
the total value of items corresponding to nodes on the ¢-side. [ ]

Now, we turn our attention to our main approximation results, which are
the two (%, ﬁ)—bicriteria approximation algorithms for MINSBCC on general
graphs. For the remainder of the section, we will use 4(.5) to denote the capacity
of the cut (S, 5) in G. We use S* to denote the minimum-size set of nodes such
that §(S*) < B, i.e. (S*,V \ S*) is the optimum cut of capacity at most B.

The analysis of both of our algorithms is based on the following linear pro-
gramming (LP) relaxation of the natural integer program for MINSBCC. We
use a variable x,, for every vertex v € V' to denote which side of the cut it is on,
and a variable y. for every edge e to denote whether or not the edge is cut.

Minimize »7, oy @y

subject to x; =1
Ye >xy —x, foralle=(u,v)€F
diecpYe Ce < B
T,y Ye >0

2.1 Randomized Rounding-Based Algorithm

Our first algorithm is based on randomized rounding of the solution to (1).

Algorithm 1 Randomized LP-rounding algorithm with parameter A

1: Let (z*,y") be the optimal solution to LP (1).
2: Choose £ € [1 — A, 1] uniformly at random.
3: Let S = {v |z} > £}, and output S.

Theorem 1. The Randomized Rounding algorithm (Algorithm 1) outputs a set
S of size at most ﬁ times the LP objective value. The expected capacity of the

cut (S, S) is at most 5 B.

Proof. To prove the first statement of the theorem, observe that for each v € S,
xy > €>1— X Therefore ) x5 >3 cqxy > (1 - N)[S].

For the second statement, observe that ¢ is selected uniformly at random
from an interval of size A. Furthermore, an edge e = (u,v) will be cut only if
¢ lies between z7 and z). The probability of this happening is thus at most

L;Iz‘ < yTG Summing over all edges yields that the expected total capacity



of the cut is at most ), % < %B. Notice, that the above algorithm can be
derandomized by trying all values | = x, since there are at most |V of those.
|

2.2 A Parametric Flow-Based Algorithm

Next, we show how to avoid solving the LP, and instead compute the cuts directly
via a parametric max-flow computation. This analysis will also show that in fact,
at most one of the two criteria is approximated, while the other is preserved.

Algorithm Description: The algorithm searches for candidate solutions among
the parametrized minimum cuts in the graph G®, which is obtained from G by
adding an edge of capacity « from every vertex v to the sink ¢ (introducing
parallel edges if necessary). Here, o is a parameter ranging over non-negative
values. Observe that the capacity of a cut (S, S) in the graph G is a|S| + §(9),
so the minimum s-t cut in G* minimizes «|S| + §(S).

Initially, as a = 0, the min-cut of G¢ is the min-cut of G. As « increases,
the source side of the min-cut of G* will contain fewer and fewer nodes, until
eventually it contains the single node {s}. All these cuts for the different values
of a can be found efficiently using a single run of the push relabel algorithm.
Moreover, the source sides of these cuts form a nested family Sy D S; D ... D Sk
of sets [17]. (Sp is the minimum s-t cut in the original graph, and S, = {s}) .
Our solution will be one of these cuts 5;.

We first observe that 6(.S;) < 6(S;) if ¢ < j; for if it were not, then S; would
be a superior cut to S; for all values of a. If §(S;) < B, then, of course, {s} is
the optimal solution. On the other hand, if §(Sy) > B, then no solution exists.
In all other cases, choose i such that §(S;) < B < 6(Si41). If 8(Sit1) < 1B,
then output S;41; otherwise, output .5;.

Theorem 2. The above algorithm produces either (1) a cut S~ such that 6(S™) <
B and |S7| < 11515, or (2) a cut ST such that §(ST) < 3B and |ST| < [S*|.

Proof. For the index ¢ chosen by the algorithm, we let S~ = S; and ST = S;1.
Hence, §(S™) < B < §(S™T).

First, observe that |ST| < |S*|, or else the parametric cut procedure would
have returned S* instead of S*. If ST also satisfies §(S*) < 1B, then we are
done. In the case that §(ST) > B, we will prove that [S~| < 2 [5*|.

Because ST and S~ are neighbors in our sequence of parametric cuts, there
is a value of a, call it a*, for which both are minimum cuts of G . Applying the
Lagrangian Relaxation technique, we remove the constraint >, yec. < B from
LP (1) and put it into the objective function using the constant a*.

Minimize o* - i %o + D ccp Ve - Ce

subject toxs =1
zz =0 (2)
Ye > 2y — 2, foralle=(u,v) €FE
Ty, Ye = 0



Lemma 1. LP (2) has an integer optimal solution.

Proof. Recall that in G* we added edges of capacity o* from every node to the
sink. Extend any solution of LP (2) to these edges by setting y. = x, — vt = x,
for the newly added edge e connecting v to t. We claim that after this extension,
the objective function of LP (2) is equivalent to ) .o+ ¥eCp, Where ¢ is the
edge capacity in the graph G® . Indeed, this claim follows from observing that
the first part of the objective of LP (2) is identical to the contribution that the
newly added edges of G®  are making towards Y ecGar YeCo-

Consider a fractional optimal solution (&, §) to LP (2) with objective function
value L* = 7 o JeC,. As this is an optimal solution, we can assume without
loss of generality that y. = max(0,2, — x,) for all edges e = (u,v). So if we
define wy =37, .0 Sus, Cups then LF = fol wydx.

Also, for any x € (0,1), we can obtain an integral solution to LP (2) whose
objective function value is w, by rounding Z, to 0 if it is no more than x, and
to 1 otherwise (and setting y,, = max(0,z, — x,)). Since this process yields
feasible solutions, we know that w, > L* for all . On the other hand, L* is a
weighted average (integral) of w,’s, and hence in fact w, = L* for all z, and any
of the rounded solutions is an integral optimal solution to LP (2). |

Notice that feasible integral solutions to LP (2) correspond to s-t cuts in G*" .
Therefore, by Lemma 1, the optimal solutions to LP (2) are the minimum s-¢
cuts in G* . In particular, ST and S~ are two such cuts. From S* and S, we
naturally obtain solutions to LP (2), by setting z;7 =1 for v € ST and 2} =0
otherwise, with yf = 1 if e is cut by (ST, ST), and 0 otherwise (similarly for
S7). By definition of a*, both (z*,y™") and (z7,y~) are then optimal solutions
to LP (2). Thus, their linear combination (z*,4*) = £-(z,yT)+(1—£)-(z~,y7)
is also an optimal feasible solution. Choose ¢ such that

E'ZeeEyche""ﬂ‘@'ZeeEQQCe=B. (3)

Such an ¢ exists because our choice of S~ and St ensured that §(S~) <
B < §(ST). For this choice of ¢, the fractional solution (z*,y*), in addition
to being optimal for the Lagrangian relaxation, also satisfies the constraint
Y oYice < B of LP (1) with equality, implying that it is optimal for LP (1)
as well. Crudely bounding the second term in Equation (3) by 0, we obtain that
8(57) =Y eepydce < 7.

As we assumed that §(ST) > £, we conclude that £ < \. Because (z*,y*) is
an optimal solution to LP (1), it provides the lower bound )", x} < |S*|, and the

N _ o _ — st X
fact that xj > (1 — £)z; now implies that [S™| =3 ., z, < % < 25187
Hence, in this case, S~ meets the capacity constraint, and exceeds the optimal

size by at most a factor of ﬁ [ ]

Both of the above algorithms can be extended with simple modifications to
allow for node weights in addition to edge capacities.



3 Bounded Treewidth

As we saw in Section 2, the MINSBCC problem is NP-complete even on trees
when both node weights and edge capacities are allowed. However, if all nodes
have unit weights, then the problem can be solved in polynomial time for graphs
of bounded treewidth, via a dynamic programming algorithm. In order to present
the intuition behind our algorithm, we first describe it for trees, and then extend
it to graphs of bounded treewidth (see [19] for a review of tree decompositions).

3.1 An Algorithm for Trees

We root the tree at the source node s and direct all edges away from s. When
all edges have capacity 1, then clearly, only edges incident with s should be cut.
They must include the edge on the unique s-t path, and in addition, the edges
to the roots of the largest subtrees. Choosing these B edges gives the smallest
possible size for the s-side of the cut.

For the case of general edge capacities, consider the tree T, rooted at a node
v, together with the edge e, into v. We define the quantity a* to be the smallest
total capacity of edges in T, that must be cut if at most £ nodes of T}, are to
be included in the source side of the cut. Notice that a¥ = c.,. Also, as the sink
must always be excluded, we have af = c., for all k.
For a leaf v, we have a) = c.,, and a® = 0 for & > 0. For an internal node
v with children vq,...,v4, we can either cut the edge e, into v, or otherwise
include v and solve the problem recursively for the children of v, hence

a¥ = min (Ce”’klzo,...,kdnz%r:lz A Z afj) for k> 0,v #t.

%

Note that the optimal partition into k;’s can be found in polynomial time by a
nested dynamic programming subroutine that uses optimal partitions of each k
into k1 ...k; in order to calculate the optimal partition into ki ... kj41.

Once we have computed a” at the source s for all values of k, we simply pick
the smallest &* such that a*” < B.

3.2 An Algorithm for Graphs with Bounded Treewidth

Recall [19] that a graph G = (V, E) has treewidth 0 if there exists a tree T, and
subsets V,, C V of nodes associated with each vertex w of T', such that:

1. Every node v € V is contained in some subset V,,.

2. For every edge e = (u,v) € E, some set V,, contains both u and v.
3. If w lies on the path between w and w’ in T', then V,, N V,» C V.
4. |V <6+ 1 for all vertices w of the tree T.

The pair (T,{V,}) is called a tree decomposition of G, and the sets V,, will be
called pieces. It can be shown that for any two neighboring vertices w and w’ of



the tree T', the deletion of V,, NV, from G disconnects G into two components,
just as the deletion of the edge (w,w’) would disconnect T" into two components.

We assume that we are given a tree decomposition (T,{V,}) for G with
treewidth @ [5]. To make sure that each edge of the original graph is accounted
for exactly once by the algorithm, we partition the set £ by mapping each edge
in it to one of the nodes in the decomposition tree. In other words, we associate
with each node w € T a set E, C EN (V, x V,,) of edges both of whose
endpoints lie in V,,, such that each edge appears in exactly one set E,,; if an
edge lies entirely in V,, for several nodes w, we assign it arbitrarily to one of
them. We will identify some node r of the tree T' with s € V,. as being the root,
and consider the edges of T' as directed away from 7.

Let W C T be the set of nodes in the subtree rooted at some node w,
Ew = Uyew Eu, and Viy = U, cw V. Also, let U, U’ C V,, be arbitrary disjoint
sets of nodes. We define a” (U, U’) to be the minimum capacity of edges from
Eyw that must be cut by any set S C Vyy such that S D U, SNU’ = 0, the sink ¢
is not included in S (i.e., t ¢ S), and |S\U| < k. But for the extension regarding
the sets U and U’, this is exactly the same quantity we were considering in the
case of trees. Also, notice that the minimum size of any cut of capacity at most
B is the smallest k for which a*~1({s},0) < B.

Our goal is to derive a recurrence relation for a® (U,U’). At any stage, we
will be taking a minimum over all subsets that meet the constraints imposed by
the size k and the sets U,U’. We therefore write S¥(U,U’) = {S |U C S C
Vi, SNU" = 0,t ¢ S,|S| < k}. The size of Sk (U, U’) is O(2%). The cost incurred
by cutting edges assigned to w is denoted by (3,,(S) = ZeeEwﬁe(S,Vw\S) Ce, and
can be computed efficiently.

If w is a leaf node, then we can include up to k additional nodes, so long as
the constraints imposed by the sets U and U’ are not violated. Hence,

k ! .
U,U) = 5 (S).
ay (U, U") ses%léﬁmﬁ ()

For a non-leaf node w, let w1, ..., wy denote its children. We can include an
arbitrary subset of nodes, so long as we add no more than k£ nodes, and do not
violate the constraints imposed by the sets U and U’. The remaining additional
nodes can then be divided among the children of w in any way desired. Once
we have decided to include (or exclude) a node v € V,,, this decision must be
respected by all children, i.e., we obtain different sets as constraints for the
children. Notice that any node v contained in the pieces at two descendants of
w must also be in the piece at w itself by property 3 of a tree decomposition.
Also, by the same property, any node v from V, that is not in V4, (for some
child w; of w) will not be in the piece at any descendant of w;, and hence the
information about v being forbidden or forced to be included is irrelevant in the
subtree rooted at w;. We hence have the following recurrence:

d
(Buw(S) + D aki (SN Vi, (Vi \ 8) N Vi)

i=1

a:fj(U, U')=  min min
SESKUUY) [k ki3 kimh—|S\U|



As before, for any fixed set S, the minimum over all combinations of k; values
can be found by a nested dynamic program.

By induction over the tree, we can prove that this recursive definition actually
coincides with the initial definition of a* (U,U’), and hence that the algorithm
is correct. The computation of a® (U, U’) takes time O(d - k - 2%) = O(n? - 2).
For each node, we need to compute O(n? - 4) values, so the total running time
is O(n* - 8%), and the space requirement is O(n? - 4%). To summarize, we have
proved the following theorem:

Theorem 3. For graphs of treewidth bounded by 6, there is an algorithm that
finds, in polynomial time O(8°n%), an optimal MINSBCC.

3.3 A PTAS for the node-weighted version

We conclude by showing how to extended the above algorithm to a polynomial-
time approximation scheme (PTAS) for MINSBCC with arbitrary node weights.
Suppose we want a (1 + 2¢) guarantee. Let S* denote the optimal solution
and OPT denote its value. We first guess W such that OPT < W < 2 OPT
(test all powers of 2). Next, we remove all heavy nodes, i.e. those whose weight is
more than W. We then rescale the remaining node weights w, to w;, := [ ].
Notice that the largest node weight is now at most . Hence, we can run the
dynamic programming algorithm on the rescaled graph in polynomial time.

We now bound the cost of the obtained solution, which we call S. The scaled
weight of the solution S* is at most ) _¢.[%7# | < G OPT +n (since [S*| < n).
Since S* is a feasible solution for the rescaled problem, the solution S found by
the algorithm has (rescaled) weight no more than that of S*. Thus, the original
weight of S is at most (OPT + eW). Considering that W < 2 OPT, we obtain

the desired guarantee, namely that the cost of S is at most (1 + 2¢)OPT.

4 Applications

4.1 Epidemiology and Node Cuts

Some important applications, such as vaccination, are phrased much more nat-
urally in terms of node cuts than edge cuts. Here, each node has a weight w,,
the cost of including it on the s-side of the cut, and a capacity c,, the cost of
removing (cutting) it from the graph. The goal is to find a set R C V, not con-
taining s, of capacity ¢(R) not exceeding a budget B, such that after removing
R, the connected component S containing s has minimum total weight w(S).

This problem can be reduced to (node-weighted) MINSBCC in the standard
way. First, if the original graph G is undirected, we bidirect each edge. Now,
each vertex v is split into two vertices vi, and veyt; all edges into v now enter
Vin, While all edges out of v now leave vo,t. We add a directed edge from v;y, to
vout Of capacity c¢,. Each originally present edge, i.e., each edge into v;, or out
of vout, is given infinite capacity. Finally, vy, is given node weight 0, and voys is
given node weight w,. Call the resulting graph G'.



Now, one can verify that (1) no edge cut in G’ ever cuts any originally present
edges, (2) the capacity of an edge cut in G’ is equal to the node capacity of a
node cut in G, and (3) the total node weight on the s-side of an edge cut in G’ is
exactly the total node weight in the s component of the corresponding node cut
in G. Hence an approximation algorithm for MINSBCC carries to node-cuts.

4.2 Graph Communities

Identifying “communities” has been an important and much studied problem for
social or biological networks, and more recently, the web graph [14, 15]. Different
mathematical formalizations for the notion of a community have been proposed,
but they usually share the property that a community is a node set with high
edge density within the set, and comparatively small expansion.

It is well known [21] that the densest subgraph, i.e., the set S maximizing
C|(SS|) = C(é"s) can be found in polynomial time via a reduction to MIN-CUT.
On the other hand, if the size of the set S is prescribed to be at most k, then
the problem is the well-studied densest k-subgraph problem [3,10,13], which is
known to be NP-complete, with the best known approximation ratio of O(nl/ 3-¢)
[10]. We consider the converse of the densest k-subgraph problem, in which the
density of the subgraph is given, and the size has to be minimized.

The definition of a graph community as the densest subgraph has the disad-
vantage that it lacks specificity. For example, adding a high-degree node tends
to increase the density of a subgraph, but intuitively such a node should not be-
long to the community. The notion of a community that we consider avoids this
difficulty by requiring that a certain fraction of a community’s edges lie inside

of it. Formally, let an a-community be a set of nodes S with % > «, where

d(S) is the sum of degrees of nodes in S. This definition is a relaxation of one
introduced by Flake et al. [14] and is used in [23]. We are interested in finding
such communities of smallest size.

The problem of finding the smallest a-community and the problem of finding
the smallest subgraph of a given density have a common generalization, which
is obtained by defining a node weight w, which is equal to node degree for the
former problem and to 1 for the latter. We show how to reduce this general
size minimization problem to MINSBCC in an approximation-preserving way.
In particular, by applying this reduction to the densest k-subgraph problem, we
show that MINSBCC is NP-hard even for the case of unit node weights.

Given a graph G = (V, E) with edge capacities c., node weights w,, and a
specified node s € V, we consider the problem of finding the smallest (in terms

of the number of nodes) set S containing s with ;((‘z)) > «. (The version where

s is not specified can be reduced to this one by trying all nodes s.) We modify
G to obtain a graph G’ as follows. Add a sink ¢, connect each vertex v to the
source s with an edge of capacity d(v) := ), ¢(y,u), and to the sink with an edge
of capacity 2aw,. The capacity for all edges e € E stays unchanged.

Theorem 4. A set S CV with s € S has i((?) > a if and only if (S,S U {t})

is an s-t cut of capacity at most 2¢(V) =23 pc. in G'.




Notice that this implies that any approximation guarantees on the size of S
carry over from the MINSBCC problem to the problem of finding communities.
Also notice that by making all node weights and edge capacities 1, and setting
%, a set S of size at most k satisfies % > « if and only if S is a k-
clique. Hence, the MinSBCC problem is NP-hard even with unit node weights.
However, the approximation hardness of CLIQUE does not carry over, as the

reduction requires the size k to be known.

o =

Proof. The required condition can be rewritten as ¢(S) — aw(S) > 0. As

2(c(S) — aw(S)) = 2¢(V) = (c(S,8) + > _ d(v) + 20w(S)),

vES

we find that S is an a-community iff ¢(S, S)+ >, o5 d(v) +2aw(S) < 2¢(V). The

quantity on the left is the capacity of the cut (S, S U {t}), proving the theorem.
|

5 Conclusion

In this paper, we present a new graph-theoretic problem called the minimum-
size bounded-capacity cut problem, in which we seek to find unbalanced cuts
of bounded capacity. Much attention has already been devoted to balanced and
sparse cuts [24, 22,18, 2]; we believe that unbalanced cut problems will pose an
interesting new direction of research and will enhance our understanding of graph
cuts. In addition, as we have shown in this paper, unbalanced cut problems have
applications in disaster and epidemics control as well as in computing small dense
subgraphs and communities in graphs. Together with the problems discussed in
[11,12,25], the MINSBCC problem should be considered part of a more general
framework of finding unbalanced cuts in graphs.

This paper raises many interesting questions for future research. The main
open question is how well the MINSBCC problem can be approximated in a
single-criterion sense. At this time, we are not aware of any non-trivial upper
or lower bounds for its approximability. The work of [11,25] implies a (log®n, 1)
approximation — however, it approximates the capacity instead of the size, and
thus cannot be used for dense subgraphs or communities. Moreover, obtain-
ing better approximation algorithms will require using techniques different from
those in this paper, since our linear program has a large integrality gap.

Further open directions involve more realistic models of the spread of diseases
or disasters. The implicit assumption in our node cut approach is that each social
contact will always result in an infection. If edges have infection probabilities, for
instance based on the frequency or types of interaction, then the model becomes
significantly more complex. We leave a more detailed analysis for future work.

Acknowledgments We would like to thank Tanya Berger-Wolf, Venkat Gu-
ruswami, Jon Kleinberg, and Eva Tardos for useful discussions.



References

[N

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.
S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and
graph partitioning. In STOC, 2004.

. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense

subgraph. Journal of Algorithms, 34, 2000.
N. Bailey. The Mathematical Theory of Infectious Diseases and its Applications.
Hafner Press, 1975.

. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. STAM J. on Computing, 25:1305-1317, 1996.

M. Develin and S. G. Hartke. Fire containment in grids of dimension three and
higher, 2004. Submitted.

S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai,
and N. Wang. Modelling disease outbreaks in realistic urban social networks.
Nature, 429:180-184, 2004.

S. Eubank, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, and N. Wang. Structure
of social contact networks and their impact on epidemics. AMS-DIMACS Special
Volume on Epidemiology.

S. Eubank, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, and N. Wang. Structural
and algorithmic aspects of massive social networks. In SODA, 2004.

U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. In STOC,
1993.

U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. SIAM J. on Computing, 31:1090-1118, 2002.

U. Feige, R. Krauthgamer, and K. Nissim. On cutting a few vertices from a graph.
Discrete Applied Mathematics, 127:643-649, 2003.

U. Feige and M. Seltser. On the densest k-subgraph problem. Technical report,
The Weizmann Institute, Rehovot, 1997.

G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization of the web
and identification of communities. IEEE Computer, 35, 2002.

G. Flake, R. Tarjan, and K. Tsioutsiouliklis. Graph clustering techniques based
on minimum cut trees. Technical Report 2002-06, NEC, Princeton, 2002.

L. Ford and D. Fulkerson. Maximal flow through a network. Can. J. Math, 1956.
G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J. on Computing, 18:30-55, 1989.

N. Garg, V. V. Vagzirani, and M. Yannakakis. ~Approximate max-flow min-
(multi)cut theorems and their applications. SIAM J. on Computing, 1996.

J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2005.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for
emerging cyber-communities. In WWW, 1999.

E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehard
and Winston, 1976.

F.T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM, 46, 1999.

F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and
identifying communities in networks. Proc. Natl. Acad. Sci. USA, 2004.

D. Shmoys. Cut problems and their application to divide-and-conquer. In
D. Hochbaum, editor, Approximation Algorithms for NP-hard problems, pages 192—
235. PWD Publishing, 1995.

Z. Svitkina and E. Tardos. Min-max multiway cut. In APPROX, 2004.



