
IEEE TRANSACTIONS ON ROBOTICS 1

Multi-Robot Coverage of
Weighted and Unweighted Terrain

Xiaoming Zheng, Sven Koenig,Senior Member, IEEE,David Kempe, and Sonal Jain

Abstract—One of the main applications of mobile robots is
terrain coverage: visiting each location in known terrain. Terrain
coverage is crucial for lawn mowing, cleaning, harvesting, search-
and-rescue, intrusion detection and mine clearing. Naturally,
coverage can be sped up with multiple robots. In this article,
we describe Multi-Robot Forest Coverage (MFC), a new multi-
robot coverage algorithm based on an algorithm by Even et al.
for finding a tree cover with trees of balanced weights. We then
extend MFC and an alternative existing multi-robot coverage
algorithm from unweighted terrain to weighted terrain. Our
theoretical results show that the cover time of MFC is at most
about sixteen and eight times larger than minimal in weighted
and unweighted, respectively, terrain. Our experimental results
show that the cover time of MFC is close to minimal in all tested
scenarios and smaller than the cover time of the alternative multi-
robot coverage algorithm.

Index Terms—Cell Decomposition, Complexity, Multi-Robot
Coverage, NP-Hardness, Robot Teams, Spanning Tree Coverage,
Terrain Coverage.

I. I NTRODUCTION

COVERAGE requires robots to visit each location in
known terrain once to perform some task. Examples

include lawn mowing, cleaning, harvesting, search-and-rescue,
intrusion detection and mine clearing. It is frequently desirable
to minimize the time by which coverage is completed. In
recent years, robotics researchers have investigated spanning
tree-based coverage algorithms in unweighted terrain, where
the travel time is the same everywhere. The single-robot cov-
erage problem is solved with minimal cover time by Spanning
Tree Coverage (STC), a polynomial-time coverage algorithm
that decomposes terrain into cells, computes a spanning tree
of the resulting graph, and makes the robot circumnavigate it
[3]. Naturally, coverage can be sped up with multiple robots.
The multi-robot coverage problem is to compute a robot
path for each robot so that the cover time (that is, largest
travel time of any robot) is minimized. As we show in this
article, this problem is NP-complete. Thus, one needs to design
polynomial-time multi-robot coverage algorithms with subop-
timal (but small) cover time. Hazon and Kaminka recently
generalized STC to Multi-Robot Spanning Tree Coverage
(MSTC), a polynomial-time multi-robot coverage algorithm
[5]. While MSTC provably improves the cover time of STC,
it cannot guarantee its cover time to be close to minimal.

Xiaoming Zheng, Sven Koenig and David Kempe are with the Computer
Science Department, University of Southern California, LosAngeles, CA
90089, USA, emails:{xiaominz, skoenig, dkempe}@usc.edu. Sonal Jain is
with Microsoft, US-Windows Client Platform, Redmond, WA 98052, USA,
email: sonalja@microsoft.com.

Manuscript received August 31, 2007.

Fig. 1. Example of Weighted Terrain

large cells with
colors

large cells with
weights

48 32 16 32

40 56 48 16

16 40 56 32

8 24 32 48

24 8 32 40

40

small cells with
weights

12 12 8 8 4 4 8 8

12 12 8 8 4 4 8 8

10 10 14 14 12 12 4 4

10 10 14 14 12 12 4 4

4 4 10 10 14 14 8 8

4 4 10 10 14 14 8 8

2 2 6 6 8 8 12 12

2 2 6 6 8 8 12 12

6 6 2 2 8 8 10 10

6 6 2 2 8 8 10 10

10 10

10 10

Fig. 2. Model of Weighted Terrain

We generalize STC to Multi-Robot Forest Coverage (MFC), a
polynomial multi-robot coverage algorithm based on finding
a tree cover with trees of balanced weights, one tree for each
robot. We then extend both MSTC and MFC from unweighted
terrain to weighted terrain, where the travel time is not the
same everywhere, as shown in Figure 1, in order to extend
their applicability to more realistic situations. MSTC canbe
generalized relatively easily but cannot guarantee its cover
time to be small. MFC is nontrivial to generalize because it
uses a tree cover algorithm as a subroutine that is specific
to unweighted terrain. We thus first generalize the tree cover
algorithm and only then MFC. We prove that the cover time
of MFC is at most about sixteen and eight times larger than
minimal in weighted and unweighted terrain respectively. Our
experimental results show that the cover time of MFC is close
to minimal in all tested scenarios and smaller than the cover
time of MSTC. MFC has the additional benefit that it tends
to return the robots close to their initial cells, facilitating their
collection and storage.

II. PROBLEM DESCRIPTION

Terrain: We model terrain as consisting of large square cells.
Each large cell is either entirely blocked or entirely unblocked.

IEEE TRANSACTIONS ON ROBOTICS 2

large cells with weights

48 40
 R

small cells with weights

12 12 10 10

12 12 10 10

robot path with times

 R

12 11 10

11 12 10
10 12

Fig. 3. Simple Single-Robot Coverage Problem

STC
cover time = 78

 R

12 11 10

11 12
10 12

Minimal
cover time = 77

 R

10 10

10 12

12 12
11

Fig. 4. Suboptimal Cover Time of STC

Each unblocked large cell has a positive integer weight that
corresponds to how difficult it is to traverse the large cell and is
evenly divided into four small square cells. Each small cellhas
a weight that is equal to one quarter of the weight of the large
cell, as shown in Figure 2. We call terrainunweightedif the
weight of all large cells is four, which implies that the weight
of all small cells is one and thus the travel time along any
robot path is equal to the number of moves. We call terrain
weighted if the weights of the large cells can be arbitrary
positive integers. Thus, unweighted terrain is a special case of
weighted terrain.

Robots:The robots have the same size as the small cells.
They always know their current small cell and can move from
their current small cell to any adjacent small cell in the four
main compass directions without error in a time that is equal
to the average of the weights of the two small cells. (Our
analytical results can easily be adapted to other definitions
such as a time that is equal to the maximum of the weights of
the two small cells.) Each move is atomic, that is, it needs to
be executed in full by a robot. The travel time along a robot
path is the sum of the times of the moves of the robot when it
moves along the path. The robots start in different large cells
but are able to occupy the same small cell simultaneously
without blocking each other.

Team Objective:We study two different team objectives.
For the team objective “Cover,” the robots need to move so
that each small cell is visited by at least one robot. Their cover
time is equal to the largest travel time along any robot path.
For the team objective “Cover and Return,” the robots need to
move so that each small cell is visited by at least one robot
and then return to their initial small cells. Their cover and
return time is again equal to the largest travel time along any
robot path.

Figure 3 shows a complete single-robot coverage problem,
including the large cells with their weights, the small cells
with their weights, and the robot path with the times of the
moves for the team objective “Cover and Return.” The cover
and return time is equal to the sum of the weights of all large
cells, namely 88.

III. SPANNING TREE COVERAGE (STC)

Spanning Tree Coverage (STC) [3] solves single-robot cov-
erage problems. It was originally proposed for unweighted ter-
rain but also applies unchanged to weighted terrain: First,STC
constructs a graph whose vertices correspond to the unblocked

STC
cover time = 682

cover and return time = 688

 R

Fig. 5. Example of STC

MSTC
cover time = 332

cover and return time = 394

 R R
 R R

Fig. 6. Example of MSTC

large cells and whose edges connect adjacent unblocked large
cells. Second, STC finds a spanning tree of this graph. Third,
STC lets the robot move along the path that circumnavigates
this spanning tree. For the team objective “Cover and Return,”
the robot completely circumnavigates the spanning tree until it
returns to its initial small cell. For the team objective “Cover,”
the robot stops once all small cells have been visited, that is,
one move earlier. Clearly, STC runs in polynomial time. The
cover times (and cover and return times) of STC are minimal
for single-robot coverage problems in unweighted terrain since
the robot never enters any small cell twice [3].

Proposition 1: The cover times of STC in weighted terrain
are larger than minimal by at most the half of the largest
weight of any small cell. The cover and return times of STC
in weighted (and thus also unweighted) terrain are minimal for
single-robot coverage problems terrain. The minimal coverand
return times are equal to the sums of the weights of all large
cells.

Proof: For the team objective “Cover,” the robot needs to
enter every small cell except for its initial small cell at least
once and needs to exit every small cell except for its final
small cell at least once. The final small cell of a robot that
uses STC is next to its initial small cell but the best final small
cell might have a larger weight. Thus, the cover times of STC
can be larger than minimal by at most the half of the largest
weight of any small cell. For the team objective “Cover and
Return,” the robot needs to enter and exit every small cell at
least once. Assume that the robot path is(s1, . . . , sn), where
move si connects the two adjacent small cellsci and ci+1.
(cn+1 = c1 is the initial small cell of the robot.) Let the
weight of small cellci be w(ci) and the time of movesi

be t(si) = (w(ci) + w(ci+1))/2. Then, the travel time along
the robot path is

∑n

i=1
t(si) =

∑n

i=1
(w(ci) + w(ci+1))/2 =∑n

i=1
w(ci), which is at most the sum of the weights of all

small cells. STC makes the robot enter and exit every small
cell exactly once. Its cover and return times are thus equal to
the sums of the weights of all small cells and thus minimal.
The sums of the weights of all small cells are equal to the
sums of the weights of all large cells.

Thus, the cover times of STC are not necessarily minimal
in weighted terrain, as shown in Figure 4 for the single-robot
coverage problem from Figure 3 (the thick line shows the
spanning tree), but it finds close-to-minimal cover times. The
cover and return times of STC are minimal in weighted terrain.

IEEE TRANSACTIONS ON ROBOTICS 3

For illustration, Figure 5 shows the spanning tree and robot
path for the terrain from Figure 2 for one robot with the team
objective “Cover.” The cover time is 682 for STC. The robot
has to make one additional move to return to its initial small
cell for the team objective “Cover and Return” (shown with
a dashed line in the figure). The cover and return time is 688
for STC.

IV. COMPLEXITY OF MULTI -ROBOT COVERAGE

Coverage with multiple robots has received much less
attention than coverage with single robots, even though it often
results in smaller cover (and return) times. Unfortunately, it is
computationally complex to minimize the cover (and return)
times for multi-robot coverage problems, as we show in the
following for two natural versions of multi-robot coverage
problems. We thus do not expect to be able to solve them with
minimal cover (and return) times in polynomial time, and it
becomes necessary to solve them with suboptimal cover (and
return) times.

Theorem 2:It is NP-complete to determine whether the
following two versions of multi-robot coverage problems can
be solved with cover and return times (for the first version)
or cover times (for the second version) that are smaller than
a given value:

1) multi-robot coverage problems withn robots for the
team objective “Cover and Return,” wheren is part of
the input and the times of moving from one small cell
to an adjacent one are uniform; and

2) multi-robot coverage problems with two robots for the
team objective “Cover,” where the times of moving from
one small cell to an adjacent one can be non-uniform
(and large).

Proof: Both versions of the multi-robot coverage problem
are in NP since one can easily guess the robot paths and then
verify the travel times along them in polynomial time. To prove
their NP-hardness, we reduce from partitioning problems.

1) The 3-PARTITION problem is defined as follows: Given
a positive integerB and positive integersa1, . . . , a3n

strictly betweenB/4 andB/2 with
∑3n

i=1
ai = B·n, can

they be partitioned evenly inton sets? The 3-PARTITION

problem is known to be strongly NP-complete [4], that
is, NP-hard even if the integers have sizes that are only
polynomial inn.
Given an instance of it, we construct a multi-robot
coverage problem withn robots as follows: We start with
a “corridor” consisting of4n vertically adjacent large
cells, numbered from−n + 1 (bottom) to3n (top). For
i = 1, . . . , 3n, there is a “tunnel” ofai · 6n horizontally
adjacent large cells. The tunnel is connected to theith

corridor cell. Theith tunnel is to the left of the corridor
for oddi and to the right of the corridor for eveni. Then
robots start in corridor cells0,−1, . . . ,−n+1, one robot
in each of the cells. This completes the construction,
which can be done in polynomial time. We claim that
the minimal cover time is at mostB · 24n + 16n if and
only if the given integers can be partitioned evenly into
n sets.

If the given integers can be partitioned evenly inton sets
S1, . . . , Sn, then we let thejth robot cover theith tunnel
for eachi ∈ Sj , ending in its initial cell. It thus traverses
the tunnels for a travel time of at most

∑
i∈Sj

4·ai ·6n =
B · 24n, and the corridor for a travel time of at most
12n + 4n (where the4n is an upper bound on the time
to get to cell 1 of the corridor and back at the end). The
total travel time is thus at mostB · 24n + 16n, meeting
the requirement.
Conversely, if the robots cover all small cells with the
desired cover time, then letSj be the set of indicesi
such that thejth robot is the first robot to cover the small
upper cell of theith tunnel cell that is farthest away from
the corridor. These sets partition the given integers. The
total travel time of thejth robot is at least24n

∑
i∈Sj

ai,
since it needs to traverse its tunnels in both directions to
return to its initial small cell, and needs two moves to
traverse each large tunnel cell. By assumption, the total
travel time of any robot is at mostB ·24n+16n, which
implies that

∑
i∈Sj

ai ≤ B + 2

3
. Since both

∑
i∈Sj

ai

andB are integers, we have that
∑

i∈Sj
ai ≤ B for all

setsSj . Since
∑n

j=1

∑
i∈Sj

ai =
∑3n

i=1
ai = B · n, all

inequalities are equalities, and the setsSj partition the
given integers evenly.

2) This reduction has to be slightly adapted to prove the
NP-hardness of the second version of the multi-robot
coverage problem. The PARTITION problem is defined
as follows: Given a set ofk positive integers, can they
be partitioned evenly into two sets? The PARTITION

problem is known to be NP-hard if the integers can
be exponential inn [4]. But then, building tunnels of
lengthai · 6n cannot necessarily be done in polynomial
time. Instead, we collapse each tunnel to a single large
cell, with weight ai · 6n. Once we use non-uniform
cell weights, we can also avoid the requirement that the
robots return to their initial small cells, by adding two
more large “destination cells”, with weights8n2 · A,
whereA :=

∑
i ai. Since there are only two robots, we

only add two corridor cells0,−1 at the bottom, where
these two robots start. We claim that there is a valid
partition if and only if the robots can cover all cells in
time at most28n2A + 12nA + 4n.
If there is a partition(S, S), then we can assign one
robot all tunnel cellsi ∈ S, and the other alli /∈ S.
Each robot gets one destination cell. The total time in
tunnel cell i is ai · 24n (three transitions of costai ·
6n, and two of cost(ai · 6n)/2, each half of a move
to enter or leave the large tunnel cell), so the total of
all tunnel and corridor cells for each robot is at most
4n+A/2 · 24n. Travel in the destination cell takes time
3 · 8n2A + (8n2A)/2 ≤ 28n2A, for a total of at most
28n2A + 12nA + 4n, meeting the desired bounds.
Conversely, if the time is at most28n2A + 12nA + 4n,
then each robot can only visit one destination cell, and
spends a total of28n2A there. Thus, each robot spends
at most12nA + 4n in tunnel and corridor cells. Define
S, S as in the previous proof. We next claim that ifi ∈ S,

IEEE TRANSACTIONS ON ROBOTICS 4

i.e., the first robot visits tunnel celli’s upper corner first,
then it also visits the corresponding lower corner. For if
not, then each robot spends at least time18nai in tunnel
cell i, and the total time spent between the two robots in
all other tunnel cells is at least

∑
j 6=i aj · 24n. But then,

the total time they spend is at least24nA + 12nai >
24nA+8n, so at least one of them must spend more than
12nA+4n in corridor and tunnel cells, a contradiction.
Given that each robot visits both of the far two cells of
each tunnel cell, it must spend at least24nai in tunnel
cell i. Thus, the first robot spends at least

∑
i∈S 24nai in

its tunnel cells, and the second one at least
∑

i∈S 24nai.
Because

∑
i∈S 24nai ≤ 12nA+4n, and all numbers are

integers, we get that
∑

i∈S ai ≤ A/2, and similarly for∑
i∈S . This implies that(S, S) is a partition.

The first version of the multi-robot coverage problem is
for unweighted terrain but the second version is for a more
general version of weighted terrain than we consider in the
following. Currently, it is an open problem whether the first
version of the multi-robot coverage problem is NP-hard for the
team objective “Cover.” It is also an open problem whether the
first version is NP-hard for a fixed number of robots, although
we conjecture it to be.

V. M ULTI -ROBOT SPANNING TREE COVERAGE (MSTC)

An overview of multi-robot coverage algorithms is given
in [1]. Many multi-robot coverage algorithms are for robots
that interact and plan only locally [7], often called ant robots
[6], even though global planning can lead to significantly
smaller cover (and return) times since it allows the robots
to coordinate much better. Recently, STC was generalized
to Multi-Robot Spanning Tree Coverage (MSTC) [5]. (The
backtracking version of) MSTC computes suboptimal cover
(and return) times in polynomial time for multi-robot coverage
problems in unweighted terrain, as follows: MSTC first com-
putes the same spanning tree as STC, and considers the path
that circumnavigates the spanning tree. Each robot followsthe
segment of the path counterclockwise ahead of it, with one
exception: To improve the cover times, the longest segment is
divided evenly between the two adjacent robots. A few small
adjustments, detailed in [5], then ensure that MSTC reduces
the cover times of STC in unweighted terrain by a factor of
at least two for three or more robots.

We now generalize MSTC to weighted terrain, assuming
for simplicity that there are three or more robots: First, MSTC
constructs a graph whose vertices correspond to the unblocked
large cells and whose edges connect adjacent unblocked large
cells. This graph needs to be connected. Second, MSTC finds
a spanning tree of this graph. Third, MSTC splits the path
that circumnavigates this spanning tree into segments between
the initial small cells of the robots. The number of segments
is equal to the number of robots. The travel time along a
segment is the sum of the times of the moves of a robot when
it moves along the segment. Lett(r, r′) be the travel time
along the segment from the initial small cell of robotr in the
counterclockwise direction to the initial small cell of robot r′.

Assume without loss of generality that robotr1 (r2 and r3,
respectively) is adjacent to robotr4 (r1 andr2, respectively) in
the counterclockwise direction and thatt(r1, r2) is the largest
travel time along the segments. (Robotsr3 andr4 are identical
if there are only three robots.) We distinguish several cases:

1) Case 1: If the travel time along each segment is at most
half of the travel time along the path, then MSTC lets
each robot move counterclockwise along the segment
adjacent to it.

2) Case 2: Ift(r2, r3) ≤ t(r4, r1), then MSTC lets robot
r2 first move counterclockwise until it is in an adjacent
small cell to robotr3 (i.e. it meets robotr3) and then
move clockwise, lets robotr3 first move clockwise until
it meets robotr2 and then move counterclockwise, and
lets all other robots move counterclockwise.

3) Case 3: Ift(r2, r3) > t(r4, r1), then MSTC lets robotr4

first move counterclockwise until it meets robotr1 and
then move clockwise, lets robotr1 first move clockwise
until it meets robotr4 and then move counterclockwise,
and lets all other robots move clockwise.

For the team objective “Cover,” the robots move as given
above and stop once all small cells have been visited. For
the team objective “Cover and Return,” the robots move as
given above and, once all small cells have been visited, return
to their initial small cells by moving either backward along
their segments (MSTC) or along paths with minimal travel
times from their current small cells to their initial small cells
(optimized MSTC). Each small cell is visited by only one
robot, so there are never any collisions or blockages. Clearly,
MSTC runs in polynomial time.

Theorem 3:The cover times of MSTC in weighted terrain
for three or more robots are at least about a factor of2/(1+φ)
smaller than the cover times of STC, whereφ is the ratio of
the largest weight of any large cell and the sum of the weights
of all large cells.

Proof: Let wmax be the largest weight of any large cell
andwsum be the sum of the weights of all large cells (which
is equal to the travel time along the path that circumnavigates
the spanning tree). Thenφ = wmax/wsum.

1) Case 1: If the travel time along each segment is at most
half of the travel time along the path that circumnavi-
gates the spanning tree, then MSTC lets each robot move
along the segment adjacent to it in the counterclockwise
direction. The travel time of each robot and the cover
time of MSTC thus is at mostwsum/2.

2) Case 2: MSTC lets robotr2 first move counterclockwise
until it meets robotr3. The sum of the travel times of
robots r2 and r3 until they meet is at mostt(r2, r3).
Thus, robotsr2 and r3 meet after a travel time of at
most t(r2, r3)/2 + wmax/4. The termwmax/4 takes
into account that each move is atomic, and the robots
might thus not be able to split the travel time evenly
between them. MSTC lets robotr2 then move clock-
wise until it meets robotr1. The sum of the travel
times of robotsr2 and r1 until they meet is at most
t(r2, r3)/2+wmax/4+t(r2, r3)/2+wmax/4+t(r1, r2).
Thus, robotsr2 and r1 meet after a travel time of at

IEEE TRANSACTIONS ON ROBOTICS 5

most (t(r2, r3)/2 + wmax/4 + t(r2, r3)/2 + wmax/4 +
t(r1, r2))/2 + wmax/4 = (t(r2, r3) + t(r1, r2))/2 +
wmax/2 ≤ wsum/2 + wmax/2 = (1 + φ)wsum/2 and
their travel times are thus at most(1+φ)wsum/2. MSTC
lets robotr3 first move clockwise until it meets robotr2

and then move counterclockwise. Assume without loss
of generality that robotr5 is adjacent to robotr3 in
the counterclockwise direction. (Robotsr5 and r4 are
identical if there are only four robots, and robotsr5

and r1 are identical if there are only three robots.) A
similar argument as for robotr2 then shows that the
travel time of robotr3 is at mostt(r2, r3)/2+wmax/4+
t(r2, r3)/2+wmax/4+t(r3, r5) ≤ wsum/2+wmax/2 =
(1 + φ)wsum/2 since t(r1, r2) > wsum/2 and thus
t(r2, r3) + t(r3, r5) < wsum/2. MSTC lets every other
robot move counterclockwise and their travel time is
thus at most the travel time along the segment in their
counterclockwise direction which is at mostwsum/2.
Thus the travel time of each robot and the cover time
of MSTC is at most(1 + φ)wsum/2.

3) Case 3: Case 3 is just a mirror image of Case 2.

Let tstc be the cover time of STC andtmstc be the cover time
of MSTC. Then, we have shown thattmstc ≤ (1+φ)wsum/2
in all three cases. Thus,tmstc ≤ (1 + φ)wsum/2 ≤ (1 +
φ)(tstc +wmax/4)/2 = (1+φ)tstc/2+ (1+φ)wmax/8 since
tstc ≥ wsum − wmax/4.

For illustration, Figure 6 shows the spanning tree and robot
paths for the terrain from Figure 2 for four robots with the
team objective “Cover.” The cover time is 332 for MSTC.
The cover and return time is 664 for MSTC and only 394 for
optimized MSTC. This example demonstrates that the cover
(and return) times of MSTC do not necessarily improve with
an increasing number of robots since MSTC makes only two
robots exit the bottom-most row of large cells through the
narrow passage. Additional robots in the center of the bottom-
most row do not shorten the travel times of these two robots.
The cover (and return) times of MSTC become arbitrarily bad
compared to the minimal ones if one expands the terrain above
the narrow passage and adds robots in the center of the bottom-
most row. For then all of the robots would have to exit the
bottom-most row of large cells to minimize the cover (and
return) times. Thus, MSTC cannot guarantee small cover (and
return) times, which is due to the fact that the construction
of the spanning tree does not take into account that it will be
split up afterwards, resulting in unbalanced travel times of the
robots. This observation motivates our idea of constructing a
tree cover with one tree for each robot right away, where we
ensure during the construction that the weights of the trees
and thus the travel times of the robots are balanced.

VI. M ULTI -ROBOT FORESTCOVERAGE (MFC)

We now generalize STC to Multi-Robot Forest Coverage
(MFC) [8]. MFC computes suboptimal cover times (and cover
and return times) in polynomial time for multi-robot coverage
problems. MSTC determines one tree, splits the path that
circumnavigates it into one path for each robot and lets each
robot move along its path. MFC, on the other hand, determines

MFC
cover time = 15

 R R

MSTC
cover time = 9

 R R

Fig. 8. MFC and MSTC versus STC in Unweighted Terrain

one tree for each robot and lets each robot move along the path
that circumnavigates its tree, as follows: First, MFC constructs
a graph whose vertices correspond to the unblocked large cells
and whose edges connect adjacent unblocked large cells. This
graph is allowed to be disconnected, so long as each of its
components contains at least one robot. Second, MFC finds a
rooted tree cover of this graph in polynomial time, where the
roots are the vertices that correspond to the large cells that
contain the initial small cells of the robots. The roots thus
correspond to the robots. A rooted tree cover of this graph
is a forest of trees with exactly one tree for each root. The
trees can share vertices and edges. Every vertex is in at least
one tree. Third, MFC lets each robot move along the path
that circumnavigates its tree. For the team objective “Cover
and Return,” each robot completely circumnavigates its tree
until it returns to its initial small cell. For the team objective
“Cover,” the robots stop once all small cells have been visited.
Clearly, MSTC runs in polynomial time. The main question is
to how determine a suitable rooted tree cover in polynomial
time.

A. Unweighted Terrain

In unweighted terrain, we use the tree-cover algorithm by
Even et al. [2]. We define theweightof a tree to be the number
of its edges. The weight of the rooted tree cover is the largest
weight of any of its trees. The problem of finding a weight-
minimal rooted tree cover is NP-hard [2]. MFC therefore uses
a polynomial-time tree-cover algorithm to find a rooted tree
cover with a weight that is at most a factor of four larger
than minimal. If there is only one robot, then MFC reduces
to STC and thus minimizes the cover (and return) times. If
there is more than one robot, then recall that MSTC reduces
the cover times of STC by a factor of at least two for three
or more robots. MFC cannot make such a strong worst-case
guarantee about how small its cover times are with respect to
the minimal cover times of a single robot.

Proposition 4: The cover times and cover and return times
of MFC in unweighted terrain cannot be larger than the ones
of STC.

Proof: The cover times (and cover and return times) of
MFC in unweighted terrain cannot be larger than the ones of
STC because MFC makes every robot circumnavigate a tree
that can be extended to a spanning tree.

Figure 8 shows an example of unweighted terrain where the
cover time of MFC is almost equal to the cover time of STC
given the corridor is sufficiently long, even though the cover
time of MSTC is only half the cover time of STC. However,
MFC can make a much more powerful guarantee than MSTC,
namely a worst-case guarantee about how small its cover times
are with respect to the minimal cover times for the number
of available robots: Its cover times are only a constant factor
larger than minimal.

IEEE TRANSACTIONS ON ROBOTICS 6

MFC (Robot 1)
cover time = 217

cover and return time = 256

 R

MFC (Robot 2)
cover time = 216

cover and return time = 256

 R

MFC (Robot 3)
cover time = 225

cover and return time = 256

 R

MFC (Robot 4)
cover time = 216

cover and return time = 256

 R

Fig. 7. Example of MFC

Theorem 5:The cover times (and cover and return times)
of MFC in unweighted terrain are at most about a factor of
eight larger than minimal.

Proof: Let M be the weight of the rooted tree cover found
by the tree-cover algorithm of Even et al.,N the weight of
the weight-minimal rooted tree cover,O the cover time of
MFC, P the minimal cover time, andQ the minimal cover
time if the robots only need to cover the upper left small
cells of all unblocked large cells. Because circumnavigating a
tree of weightM requires entering4M + 4 small cells, we
get thatO ≤ 4M + 4, which is bounded by16N + 4 by the
approximation guarantee proved in [2]. In turn,2N ≤ Q since
the weight-minimal rooted tree cover (shifted slightly up and
to the left) connects exactly all of the upper left small cells.
The factor of two results from the fact that traversing each
edge between large cells requires entering two small cells.As
Q ≤ P trivially, we can combine these results to getO ≤
4M +4 ≤ 16N +4 ≤ 8Q+4 ≤ 8P +4. The proof continues
to hold if each occurrence of cover time is replaced with cover
and return time.

B. Weighted Terrain

The tree-cover algorithm by Even et al. [2] does not apply
to weighted terrain. In weighted terrain, we therefore use a
new tree-cover algorithm TREE COVER that we describe in
Section VII. Each vertex now has a weight equal to the weight
of its large cell. We define the weight of a tree to be the sum of
the weights of its vertices. The weight of the rooted tree cover
is the largest weight of any of its trees. The problem of finding
a weight-minimal rooted tree cover remains NP-hard, as we
prove in Section VII. MFC therefore uses this polynomial-time
tree-cover algorithm to find a rooted tree cover with a weight
that is at most a factor of4(1 + φ|K|) larger than minimal,
where |K| is the number of robots andφ is the ratio of the
largest weight of any large cell and the sum of the weights of
all large cells. We now prove theorems of MFC with TREE
COVER in weighted terrain that are similar to those that we
proved already for MFC with the tree-cover algorithm by Even
et al. [2] in unweighted terrain.

Proposition 6: The cover times of MFC in weighted terrain
can be larger than the ones of STC by at most the largest
weight of any small cell. The cover and return times of MFC
in weighted terrain cannot be larger than the ones of STC.

Proof: The cover times of STC in weighted terrain can
be smaller than the sum of the weights of all large cells by

at most the largest weight of any small cell, while the cover
times of MFC are at most the weights of the largest trees and
thus at most the sum of the weights of all large cells. Thus,
the cover times of MFC can be larger than the cover times
of STC by at most the largest weight of any small cell. The
cover and return times of STC are equal to the sum of the
weights of all large cells, while the cover and return times of
MFC are equal to the weights of the largest trees and thus at
most the sum of the weights of all large cells. Consequently,
the cover and return times of MFC cannot be larger than the
cover and return times of STC.

Theorem 7:The cover times (and cover and return times)
of MFC in weighted terrain are at most about a factor of
16(1 + φ|K|) larger than minimal, where|K| is the number
of robots andφ is the ratio of the largest weight of any large
cell and the sum of the weights of all large cells.

Proof: Let M be the weight of the rooted tree cover found
by TREE COVER,N the weight of a weight-minimal rooted
tree cover,O the cover time of MFC,P the minimal cover
time, andQ the minimal cover time if the robots need to visit
only the upper left small cells of all large cells. Furthermore,
let wmax be the largest weight of any large cell.

Because the robots visit all small cells and return to their
initial small cells when they circumnavigate their trees, the
resulting cover time cannot be larger than the weight of the
rooted tree cover. Therefore,O ≤ M . By Theorem 11 below,
TREE COVER finds rooted tree covers with a weight that
is at most a factor of4(1 + φ|K|) larger than minimal, so
M ≤ 4(1 + φ|K|)N .

The key part of the proof is to boundN . Consider the paths
of the robots if they need to visit only the upper left small cells
of all large cells. Construct a rooted tree cover where the tree
of a robot contains exactly the vertices that correspond to the
large cells that contain the upper left small cells visited by
the robot. The weight of each tree divided by four is equal to
the sum of the weights of all upper left small cells visited by
the robot. The sum of the weights of all upper left small cells
visited by the robot is at most the travel time of the robot plus
the largest weight of any small cell. For the robot has to enter
and exit all upper left small cells except possibly for its initial
small cell (if it starts in one), which it does not need to enter,
and its final small cell (if it ends in one), which it does not
need to exit. Thus, the weight of this rooted tree cover (and
thus also the weight of a weight-minimal rooted tree cover)
divided by four is at most the minimal cover time if the robots

IEEE TRANSACTIONS ON ROBOTICS 7

need to visit only the upper left small cells of all large cells
plus the largest weight of any small cell. This lets us bound
N/4 ≤ Q + wmax/4.

Finally, Q ≤ P holds trivially, and we can combine these
bounds to getO ≤ M ≤ 4(1 + φ|K|)N ≤ 16(1 + φ|K|)Q +
4(1+φ|K|)wmax ≤ 16(1+φ|K|)P +4(1+φ|K|)wmax. The
proof continues to hold if each occurrence of “cover time” is
replaced with “cover and return time”.

The ratioφ is close to zero for terrain with many large cells
of about the same weight. For example,φ = 0.0814 for the
terrain from Figure 2. Then,16(1 + φ|K|) ≈ 16 for a small
number of robots|K|. Thus, the cover times (and cover and
return times) of MFC are at most about sixteen times larger
than minimal.

For illustration, Figure 7 shows the trees and robot paths
for the terrain from Figure 2 for four robots, together with
the cover time and cover and return time for each robot. The
cover time is 225 and the cover and return time is 256 for
MFC.

VII. W EIGHT-M INIMAL ROOTED TREE COVERS

We now modify the tree-cover algorithm by Even et al. [2]
(and the proofs in that paper) to work on graphs with weighted
vertices rather than weighted edges. We state the tree-cover
algorithm (called TREE COVER), prove its properties and
describe how MFC uses it.

A. Tree Cover Problem

We define the WEIGHT-M INIMAL ROOTED TREE COVER

problem as follows: LetG = (V,E) be a graph with weighted
vertices, wherew(v) is the integer weight of vertexv ∈ V .
Let K ⊆ V be a set of distinguished vertices, called roots. A
K-rooted tree cover ofG is a forest of|K| trees, which can
share vertices and edges. The set of their roots must be equal
to K, and every vertex inV has to be in at least one tree. The
weight of a tree is the sum of the weights of its vertices. The
weight of aK-rooted tree cover is thelargest weight of any
of its trees. Given a graphG = (V,E) with weighted vertices
and a setK ⊆ V of roots, find a weight-minimalK-rooted
tree cover of graphG.

B. Definitions

We use the shorthandswsum :=
∑

v∈V w(v), wmax :=
maxv∈V w(v) and φ := wmax/wsum (as used earlier). Fur-
thermore, we define the weight of a path in the graph to be the
sum of the weights of its vertices, except for its end vertices.
We define the distance between two trees in the graph to be
the minimal weight of any path that connects some vertex in
one of the trees to some vertex in the other tree.

C. Complexity

We show that the WEIGHT-M INIMAL ROOTED TREE

COVER problem is NP-hard, which provides our motivation
for designing polynomial-time approximation algorithms.

Theorem 8:It is NP-hard to find weight-minimalK-rooted
tree covers for graphsG.

Proof: To prove the NP-hardness, we reduce from the
BIN-PACKING problem, which is defined as follows: Given a
set of elements with given integer sizes and a fixed number
of bins, each with the same given integer capacity, can each
element be placed in exactly one of the bins so that the sum
of the sizes of the elements in each bin does not exceed its
capacity?

Given an instance of it, we construct a yes/no version of the
WEIGHT-M INIMAL ROOTED TREE COVER problem, namely
determining whether a given graphG has aK-rooted tree
cover whose weight is at most a given constant. We give our
reduction as follows: We create a completely connected graph
G with one vertex for each element (whose weight is equal to
the size of the element) and one vertex for each bin (whose
weight is one). The set of rootsK contains exactly the vertices
for the bins. This completes the construction, which can be
done in polynomial time.

If the weight of aK-rooted tree cover is at most the given
capacity plus one, then placing each element in one of its
“root bins” will meet the capacity constraints. Similarly,if
each element can be placed in exactly one of the bins so that
the sum of the sizes of the elements in each bin does not
exceed its capacity, then one can make the tree rooted in the
vertex of a bin contain the vertices of the elements that the
bin contains. Thus, the weight of a weight-minimalK-rooted
tree cover is at most the given capacity plus one as well.

D. Tree Cover Algorithm

TREE COVER takes as input a graphG, a set of roots
K and a boundB ≥ wmax. It either reports SUCCESS and
returns aK-rooted tree cover of graphG with weight at most
4B or reports FAILURE, in which case there does not exist a
K-rooted tree cover of graphG with weight at mostB/(1 +
φ|K|). TREE COVER operates as follows:

1) Contract all roots into a single vertex, find any spanning
tree of the resulting graph, and then uncontract the single
vertex again, splitting the spanning tree into|K| trees.

2) Decompose each tree recursively into zero or more non-
leftover subtrees and one leftover subtree. We call the
following decomposition procedure once for each tree
from the previous step. The decomposition procedure
removes vertices from the given tree as it generates the
non-leftover subtrees. When it terminates, we declare
the leftover subtree to be the root of the given tree if
all vertices have been deleted. Otherwise, we declare
the leftover subtree to be the remaining tree (formed by
the non-deleted vertices). The decomposition procedure
applies to a tree rooted inr. We distinguish three cases:
Case 1:The weight of the tree rooted inr is less than
B. Then, the procedure simply returns.
Case 2: The weight of the tree rooted inr is in the
interval [B, 2B). Then, one non-leftover subtree consists
of the tree rooted inr. We remove the subtree from the
tree rooted inr (leaving the empty tree) and return.
Case 3:The weight of the tree rooted inr is at least
2B. We distinguish three subcases:
Case 3a: The weights of all trees rooted in children of
r are less thanB. Then, we pick a number of trees

IEEE TRANSACTIONS ON ROBOTICS 8

rooted in children ofr so that the weight of the tree
consisting ofr and these trees is in the interval[B, 2B).
One non-leftover subtree consists ofr and these trees.
We remove the subtree except forr from the tree rooted
in r and recursively apply the decomposition procedure
to the remaining tree rooted inr in order to find the other
non-leftover subtrees. It is possible to pick a number of
trees rooted in children ofr so that the weight of the tree
consisting ofr and these trees is in the interval[B, 2B)
since wr ≤ wmax ≤ B and the weights of all trees
rooted in children ofr are less thanB but the weight
of the tree rooted inr is 2B or larger.
Case 3b: The weight of at least one tree rooted in a
child of r is in the interval [B, 2B). Then, we pick
such a tree. One non-leftover subtree consists of this
tree. We remove the subtree from the tree rooted inr
and recursively apply the decomposition procedure to
the remaining tree rooted inr in order to find the other
non-leftover subtrees.
Case 3c: Otherwise, the weight of at least one tree rooted
in a child ofr is 2B or larger. Then, we recursively apply
the decomposition procedure first to such a tree rooted
in a child of r and then to the remaining tree rooted in
r in order to find the non-leftover subtrees.

3) Find a maximum matching of all non-leftover subtrees
to the roots, subject to the constraint that a non-leftover
subtree can only be matched to a root if the non-leftover
subtree and the leftover tree of the root are at distance
of at mostB.

4) If any non-leftover subtree cannot be matched, report
FAILURE. Otherwise, report SUCCESS and, for each
root, return the tree consisting of the leftover subtree of
the root, the single non-leftover subtree (if any) matched
to the root, and a weight-minimal path (if any) from the
non-leftover subtree to the leftover subtree.

E. Properties

Clearly, TREE COVER runs in polynomial time and either
reports SUCCESS or FAILURE. It is also easy to see that
the weights of all non-leftover subtrees (if any) returned by
the decomposition procedure in Step 2 of TREE COVER for
a given tree are in the interval[B, 2B). The weight of the
leftover subtree is in the interval(0, B). Also, the root of
the tree is in the leftover subtree. We now prove the main
properties of TREE COVER. For notational convenience, we
write ǫ := φ|K|.

Theorem 9:If TREE COVER reports SUCCESS, then it
returns aK-rooted tree cover of graphG with weight at most
4B.

Proof: If TREE COVER reports SUCCESS then it re-
turns, for each root, the tree consisting of the leftover subtree
of the root of weight at mostB, the single non-leftover subtree
(if any) matched to the root of weight at most2B, and a
weight-minimal path (if any) of weight at mostB from the
non-leftover subtree to the leftover subtree. The weight ofeach
tree is thus at most4B.

Theorem 10:If TREE COVER reports FAILURE, then
there is noK-rooted tree cover of graphG with weight at
mostB/(1 + ǫ).

Proof: Assume that a weight-minimalK-rooted tree
cover T of graphG has weightB′ ≤ B/(1 + ǫ). Let L be
the set of non-leftover subtrees created in Step 2 of TREE
COVER andK(l) ⊆ K be the set of roots at distance at most
B from subtreel ∈ L. We show that|

⋃
l∈L′ K(l)| ≥ |L′| for

every set of non-leftover subtreesL′ ⊆ L. Step 3 of TREE
COVER can then match all non-leftover subtrees according to
Hall’s Marriage Theorem. Therefore, TREE COVER reports
SUCCESS.

Consider anyL′ ⊆ L. Let T ′ ⊆ T be the set of trees in the
optimum solution which have at least one vertex in common
with at least one of the non-leftover subtrees inL′. Let w(L′)
be the sum of the weights of all non-leftover subtrees inL′

andw(T ′) be the sum of the weights of all trees inT ′.
We first lower bound|

⋃
l∈L′ K(l)| ≥ |T ′|. For every tree

t ∈ T ′, there exists at least one non-leftover subtreel in L′ that
has at least one vertex in common witht. l and the root oft are
at distance at mostB′ ≤ B/(1 + ǫ) ≤ B. Therefore,l can be
matched to the root oft. Overall, the set

⋃
l∈L′ K(l) contains

the roots of all trees inT ′, implying that|
⋃

l∈L′ K(l)| ≥ |T ′|.
Next, we want to show that|T ′| ≥ |L′|, which we do by

relating the weights of the corresponding sets. Because the
weights of all non-leftover subtrees are in the interval[B, 2B),
and the weights of all trees inT ′ are at mostB′, we obtain
that w(L′) ≥ B|L′| andw(T ′) ≤ B′|T ′|.

To relatew(L′) andw(T ′), we observe that every vertex in
non-leftover subtrees inL′ is also in at least one tree inT ′. The
non-leftover subtrees inL′ can contain at most|L′| duplicate
vertices. The reason is that every non-leftover subtree created
by Step 2 of TREE COVER contains at most one vertex that
has not yet been removed from all trees created in Step 1 and
thus could be a duplicate vertex. The trees created in Step
1 share at most their roots, and Step 2 removes all vertices
of a non-leftover subtree from its tree, except possibly forthe
root of the non-leftover subtree in Case 3a, when it creates the
non-leftover subtree. Since each of these duplicate vertices has
weight at mostwmax, we obtain the boundw(L′) ≤ w(T ′)+
wmax|L

′|.
Finally, to boundwmax, we observe that at best, the sum

of the weights of all vertices could be split evenly among the
trees; hence,B′ ≥ wsum/|K|, which implies thatwmax =
wsumφ ≤ |K|B′φ. Combining all these bounds, we get

B′|T ′| ≥ w(T ′) ≥ w(L′) − wmax|L
′|

≥ B|L′| − |K|B′φ|L′|
= (B − |K|B′φ)|L′|
≥ (B′(1 + ǫ) − B′ǫ)|L′|
= B′|L′|,

and thus|
⋃

l∈L′ K(l)| ≥ |T ′| ≥ |L′|.

F. Application

Theorem 11:There is an algorithm finding aK-rooted tree
cover of graphG with weight at most a factor of4(1 + ǫ)
larger than minimal.

IEEE TRANSACTIONS ON ROBOTICS 9

Proof: We perform binary search on the interval
[wmax, wsum] to find a small value ofB for which TREE
COVER reports SUCCESS. We start with the lower bound
wmax and the upper boundwsum. We then repeatedly run
TREE COVER withB set to the average of the lower and
upper bound. If TREE COVER reports FAILURE, then we set
the lower bound toB. Otherwise, we set the upper bound to
B. We stop once the difference of the upper and lower bound
is less than(1 + ǫ). Let b be the weight of a weight-minimal
K-rooted tree coverT of graph G. Because the weight of
each unblocked large cell is a positive integer,b ≥ 1. Let Bl

be the lower bound andBu be the upper bound of the binary
search after termination. Let̂B = ⌈Bl/(1 + ǫ)⌉. We consider
the following two cases.

1) TREE COVER reports SUCCESS withB set to (1 +
ǫ)B̂. If Bl = wmax (the initial lower bound), then the
fact thatb > wmax/(1+ ǫ) implies thatb > Bl/(1+ ǫ).
Otherwise, the definition of binary search implies that
TREE COVER withB set toBl reports FAILURE, and
Theorem 10 implies thatb > Bl/(1 + ǫ).
Becauseb is an integer, we in fact get the stronger bound
b ≥ ⌈Bl/(1+ ǫ)⌉ = B̂. The weight of theK-rooted tree
cover returned by TREE COVER withB set to(1+ǫ)B̂
is at most4(1 + ǫ)B̂ (according to Theorem 9), which
in turn is bounded by4(1 + ǫ)b. That is, the weight is
at most a factor of4(1 + ǫ) larger than minimal.

2) TREE COVER reports FAILURE withB set to(1+ǫ)B̂.
Theorem 10 thus implies thatb > (1+ǫ)B1/(1+ǫ) = B̂,
and sinceb is an integer,b ≥ B̂ + 1 =: B′. Since
(Bu − Bl)/(1 + ǫ) < 1 according to the termination
condition of the binary search,B′ ≥ Bl/(1 + ǫ) + 1 >
Bu/(1 + ǫ). Thus,(1 + ǫ)B′ > Bu, and TREE COVER
reports SUCCESS withB set to(1+ǫ)B′. The weight of
theK-rooted tree cover we have withB set to(1+ǫ)B′

is at most4(1+ǫ)B′ ≤ 4(1+ǫ)b, according to Theorem
9. This is at most a factor of4(1+ǫ) larger than minimal.

The binary search runs in polynomial time because TREE
COVER runs in polynomial time and is run⌈log2((wsum −
wmax)/(1+ ǫ))⌉ ≤ log2 wsum +1 times, which is polynomial
in the size of the input.

VIII. E XPERIMENTAL RESULTS

We compare MFC and (the backtracking version of) MSTC
experimentally. We evaluate them on both team objectives,
namely ”Cover” and ”Cover and Return”, and in different
scenarios, namely different kinds of terrain [terrain], different
numbers of robots [robots], and different clustering of the
robots [clustering]. The size of the terrain is always49 × 49
large cells. The weight of each unblocked large cell in
weighted terrain is chosen from the weights 8, 16, 24, . . . ,
80. Figure 9 shows the three different kinds of terrain used
in the experiments. The first kind of terrain is empty [empty].
The second kind is an outdoor-like terrain where walls are
randomly removed from a random depth-first maze until the
wall density drops to 10 percent, resulting in terrain with
random obstacles [outdoor]. The third kind is an indoor-like

terrain with walls and doors [indoor]. The position of the walls
and doors are fixed, but doors are closed with 20 percent
probability. We vary the number of robots from 2, 8, 14 to
20 robots. We ensure that no two robots are placed in the
same large cell by randomly choosing different large cells for
each robot and placing the robots in their lower left small
cells. A clustering percentage parameterx determines how
strongly the initial large cells of the robots are clustered. The
first robot is placed uniformly at random. Subsequent robots
are then placed within an area centered at the first robot, whose
height and width are (approximately)x% of the height and
width of the terrain. Thus, a small value ofx results in a high
clustering of initial large cells, whilex = 200 is equivalent
to no clustering at all [none]. For each scenario, we report
data that are averaged over at least 50 runs with randomly
generated terrain (if applicable) and randomly generated initial
large cells. All cover (and return) times are rounded to the
nearest integer.

We report our experimental results for unweighted terrain
in Figure 10 and for weighted terrain in Figure 11. The tables
report for each scenario a lower bound that represents the
idealized cover (and return) time [ideal max]: It simply divides
the sum of the weights of all large cells by the number of
robots (and, for unweighted terrain, subtracts one). The ideal
cover (and return) times would result if no robot needed to
pass through already visited small cells. The table also reports
the smallest [min] and largest [max] travel time of any robot
for each combination of a multi-robot coverage algorithm,
scenario and team objective. The largest travel times are equal
to the cover (and return) times, and the difference between the
smallest and largest travel times gives an indication of how
balanced the travel times of the robots are. In addition, the
table also reports the ratios of the actual travel times and the
ideal cover (and return) times [ratio], giving the upper bounds
on how much the actual cover (and return) times are larger
than minimal. The ratio is indeed only an upper bound, since
the ideal may not be achievable. For instance, several robots
must visit the same small cells in the example from Figure 7.

We make the following observations: The ratios of the
cover (and return) times and the ideal cover (and return)
times increase with the number of robots for both MFC and
MSTC since the overhead (defined as the number of already
visited small cells that a robot passes through) increases with
the number of robots. The ratios increase very slowly with
the number of robots for MFC, but much faster for MSTC,
implying that the cover (and return) times of MFC remain
close to minimal for large numbers of robots. The ratios
change insignificantly with the amount of clustering for MFC,
but a lot for MSTC, implying that the cover (and return) times
of MFC remain small if robots start in nearby small cells –
a common situation since robots are often deployed or stored
together. The ratios change insignificantly for MFC if the team
objective is changed from “Cover” to “Cover and Return”, but
increase by about a factor of two for non-optimized MSTC
because the robot with the largest travel time has to backtrack
along most of its robot path. This implies that all robots are
close to their initial small cells when coverage is complete
for MFC, which facilitates their retrieval. The cover timesof

IEEE TRANSACTIONS ON ROBOTICS 10

Empty Terrain Outdoor-Like Terrain Indoor-Like Terrain

Fig. 9. Screenshots of Different Kinds of Terrain

Terrain Robots Clustering Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”

Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio

Empty 2 30 4801 4878 (4731) 1.02 4877 (4730) 1.02 10538 (8666) 2.19 5269 (5048) 1.10 5337 (4410) 1.11 5269 (4346) 1.10
2 60 4801 4886 (4720) 1.02 4885 (4719) 1.02 10889 (8315) 2.27 5445 (5095) 1.13 5513 (4241) 1.15 5445 (4180) 1.13
2 none 4801 4888 (4725) 1.02 4886 (4723) 1.02 11057 (8147) 2.30 5529 (5161) 1.15 5602 (4168) 1.17 5529 (4107) 1.15
8 30 1200 1399 (838) 1.17 1396 (837) 1.16 7499 (73) 6.25 3752 (38) 3.13 3817 (45) 3.18 3751 (38) 3.13
8 60 1200 1415 (904) 1.18 1414 (902) 1.18 6923 (154) 5.77 3462 (77) 2.89 3539 (93) 2.95 3462 (77) 2.89
8 none 1200 1394 (956) 1.16 1391 (953) 1.16 6411 (248) 5.34 3210 (127) 2.68 3281 (146) 2.73 3206 (124) 2.67
14 30 685 841 (431) 1.23 836 (431) 1.22 7369 (5) 10.76 3685 (2) 5.38 3756 (5) 5.48 3685 (2) 5.38
14 60 685 819 (522) 1.20 815 (522) 1.19 6774 (17) 9.89 3387 (8) 4.94 3461 (16) 5.05 3387 (8) 4.94
14 none 685 830 (513) 1.21 824 (511) 1.20 6005 (49) 8.77 3002 (25) 4.38 3072 (40) 4.48 3002 (25) 4.38
20 30 479 615 (307) 1.28 609 (307) 1.27 7224 (3) 15.08 3612 (1) 7.54 3685 (3) 7.69 3612 (1) 7.54
20 60 479 604 (332) 1.26 599 (332) 1.25 6728 (9) 14.05 3364 (4) 7.02 3439 (9) 7.18 3364 (4) 7.02
20 none 479 604 (321) 1.26 599 (319) 1.25 5591 (18) 11.67 2796 (9) 5.84 2867 (18) 5.99 2796 (9) 5.84

Outdoor 2 30 4321 4380 (4269) 1.01 4379 (4268) 1.01 9391 (7893) 2.17 4695 (4574) 1.09 4772 (4031) 1.10 4695 (3960) 1.09
2 60 4321 4382 (4266) 1.01 4381 (4265) 1.01 9556 (7728) 2.21 4778 (4627) 1.11 4854 (3957) 1.12 4778 (3890) 1.11
2 none 4321 4377 (4269) 1.01 4376 (4268) 1.01 9683 (7601) 2.24 4842 (4525) 1.12 4923 (3903) 1.14 4842 (3931) 1.12
8 30 1079 1263 (789) 1.17 1260 (788) 1.17 6985 (36) 6.47 3500 (18) 3.24 3561 (26) 3.30 3494 (18) 3.24
8 60 1079 1278 (790) 1.18 1274 (789) 1.18 6314 (113) 5.85 3158 (59) 2.93 3229 (70) 2.99 3157 (58) 2.93
8 none 1079 1247 (873) 1.16 1243 (871) 1.15 6032 (151) 5.59 3016 (76) 2.80 3099 (94) 2.87 3016 (76) 2.80
14 30 616 764 (450) 1.24 760 (451) 1.23 6759 (6) 10.97 3392 (3) 5.51 3452 (6) 5.60 3380 (3) 5.49
14 60 616 750 (482) 1.22 745 (481) 1.21 6311 (27) 10.25 3156 (13) 5.12 3228 (20) 5.24 3156 (13) 5.12
14 none 616 746 (464) 1.21 741 (463) 1.20 5497 (52) 8.92 2748 (26) 4.46 2819 (37) 4.58 2748 (26) 4.46
20 30 431 572 (280) 1.33 567 (281) 1.32 6723 (3) 15.60 3362 (2) 7.80 3437 (3) 7.97 3362 (2) 7.80
20 60 431 557 (285) 1.29 552 (285) 1.28 6131 (10) 14.23 3066 (5) 7.11 3140 (9) 7.29 3065 (5) 7.11
20 none 431 551 (296) 1.28 547 (294) 1.27 5348 (23) 12.40 2674 (12) 6.20 2740 (18) 6.36 2674 (12) 6.20

Indoor 2 30 4090 4172 (4017) 1.02 4171 (4015) 1.02 8937 (7422) 2.19 4468 (4230) 1.09 4539 (3797) 1.11 4468 (3729) 1.09
2 60 4090 4196 (3995) 1.03 4194 (3994) 1.03 9243 (7116) 2.26 4621 (4290) 1.13 4690 (3648) 1.15 4621 (3585) 1.13
2 none 4090 4172 (4015) 1.02 4171 (4014) 1.02 9326 (7033) 2.28 4663 (4166) 1.14 4739 (3615) 1.16 4663 (3549) 1.14
8 30 1022 1232 (849) 1.21 1225 (849) 1.20 6501 (24) 6.36 3262 (12) 3.19 3319 (17) 3.25 3253 (12) 3.18
8 60 1022 1209 (846) 1.18 1202 (846) 1.18 6081 (86) 5.95 3042 (44) 2.98 3114 (55) 3.05 3041 (43) 2.98
8 none 1022 1209 (842) 1.18 1199 (839) 1.17 5815 (180) 5.69 2905 (90) 2.84 2981 (108) 2.92 2907 (90) 2.84
14 30 584 775 (438) 1.33 768 (439) 1.32 6348 (4) 10.86 3192 (2) 5.47 3254 (4) 5.57 3190 (2) 5.46
14 60 584 748 (452) 1.28 741 (452) 1.27 5995 (22) 10.27 2999 (11) 5.14 3071 (16) 5.26 2998 (11) 5.13
14 none 584 732 (448) 1.25 725 (445) 1.24 5033 (46) 8.62 2517 (23) 4.31 2594 (31) 4.44 2517 (23) 4.31
20 30 408 617 (241) 1.51 608 (242) 1.49 6370 (3) 15.61 3188 (1) 7.81 3248 (3) 7.96 3186 (1) 7.81
20 60 408 570 (270) 1.40 566 (271) 1.39 5732 (10) 14.05 2866 (5) 7.02 2939 (8) 7.20 2866 (5) 7.02
20 none 408 547 (279) 1.34 540 (277) 1.32 4696 (22) 11.51 2348 (11) 5.75 2420 (17) 5.93 2348 (11) 5.75

Fig. 10. Experimental Results for MFC and MSTC in Unweighted Terrain (“Max” = Cover Time or Cover and Return Time)

optimized MSTC are similar to the ones of non-optimized
MSTC but its cover and return times are significantly smaller.
Consequently, the ratios are reduced by a factor of two and
then no longer differs significantly from the ratios for “cover.”
However, even without such optimizations, MFC continues
to have much smaller cover times than optimized MSTC,
for both team objectives in all scenarios. MFC has much
smaller cover (and return) times than MSTC for more than two
robots and comparable cover (and return) times than optimized
MSTC for two robots because MFC takes the team objective
already into account when finding a tree for each robot
to circumnavigate, whereas MSTC takes the team objective
only into account when it decides how the robots should
circumnavigate the single tree. Consequently, MSTC does not
balance the travel times of the robots as well, as evidenced
by a large difference between the minimal and largest travel
times of the robots. Theorem 5 guarantees that the cover (and
return) times of MFC in unweighted terrain are at most a
factor of eight larger than minimal but empirically the ratios
are significantly smaller (at most 1.51) in all tested scenarios.
Similarly, Theorem 7 guarantees that the cover (and return)
times of MFC in weighted terrain are at most a factor of about
sixteen larger than minimal since the values ofφ are indeed

very small. For example,φ = 8.9 × 10−4 for empty terrain,
φ = 9.9 × 10−4 for outdoor terrain andφ = 10.5 × 10−4 for
indoor terrain. Empirically, however, the ratios are significantly
smaller (at most 1.77) in all tested scenarios.

IX. CONCLUSIONS

In this article, we introduced a new multi-robot coverage
algorithm, called Multi-Robot Forest Coverage (MFC). We
extended MFC and an alternative existing multi-robot cov-
erage algorithm, called Multi-Robot Spanning Tree Coverage
(MSTC), from unweighted terrain to weighted terrain. Our
experimental results showed that the cover time of MFC is
smaller than the one of Multi-Robot Spanning-Tree Coverage
(MSTC) and close to minimal in all tested scenarios. Currently,
MFC assumes ideal robots. It is future work to generalize it to
robots with actuator and sensor uncertainty and other typical
imperfections, which includes making it robust in the presence
of failing robots. It is also future work to combine the ideas
behind MSTC and MFC, especially if several robots start in
nearby small cells.

IEEE TRANSACTIONS ON ROBOTICS 11

Terrain Robots Clustering Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”

Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio

Empty 2 30 45094 47369 (43018) 1.07 47353 (10612) 1.07 96669 (83672) 2.19 48340 (46595) 1.10 48865 (42446) 1.11 48334 (41325) 1.10
2 60 45094 47840 (42516) 1.09 47825 (10621) 1.08 100558 (79782) 2.27 50284 (48821) 1.14 50940 (40688) 1.15 50279 (40101) 1.14
2 none 45094 48061 (42334) 1.09 48028 (10613) 1.09 104811 (75532) 2.37 52409 (48862) 1.19 53082 (38625) 1.20 52406 (38078) 1.19
8 30 11273 12698 (9676) 1.15 12645 (9208) 1.14 73870 (411) 6.67 36967 (206) 3.34 37506 (261) 3.38 36938 (207) 3.33
8 60 11273 12765 (10058) 1.16 12749 (9549) 1.15 72479 (1106) 5.54 36240 (559) 2.27 36883 (668) 3.33 36240 (559) 2.27
8 none 11273 13726 (8983) 1.24 13699 (8729) 1.24 54885 (2519) 4.94 27453 (1259) 2.47 28026 (1511) 2.52 27445 (1260) 2.47
14 30 6442 7620 (5396) 1.21 7586 (5359) 1.20 72107 (37) 11.41 36054 (19) 5.71 36639 (37) 5.80 36054 (19) 5.71
14 60 6442 7620 (5208) 1.21 7581 (5166) 1.20 69594 (177) 11.01 34797 (89) 5.51 35441 (149) 5.61 34797 (89) 5.51
14 none 6442 8004 (4768) 1.27 7977 (4719) 1.26 43131 (616) 6.71 21566 (308) 3.35 22099 (438) 3.44 21566 (308) 3.35
20 30 4509 5575 (3487) 1.26 5505 (3466) 1.24 70424 (19) 15.93 35214 (9) 7.97 35810 (19) 8.10 35214 (9) 7.97
20 60 4509 5460 (3666) 1.23 5428 (3628) 1.23 67842 (93) 15.39 33922 (48) 7.69 34553 (93) 7.84 33921 (48) 7.69
20 none 4509 5736 (3093) 1.29 5704 (3054) 1.28 33042 (280) 7.50 16521 (140) 3.75 17028 (254) 3.87 16251 (140) 3.75

Outdoor 2 30 40586 43430 (37877) 1.09 43418 (10612) 1.09 86654 (75655) 2.18 43330 (42868) 1.09 43927 (38497) 1.10 43327 (37933) 1.09
2 60 40586 43677 (37652) 1.10 43664 (10600) 1.10 91671 (70637) 2.29 45841 (42694) 1.15 46410 (36050) 1.16 45836 (35512) 1.15
2 none 40586 43910 (37472) 1.10 43884 (10652) 1.10 94781 (67529) 2.38 47396 (42937) 1.19 48083 (34655) 1.21 47390 (34071) 1.19
8 30 10146 11679 (8657) 1.17 11622 (8484) 1.17 66563 (303) 6.72 33287 (153) 3.36 33847 (209) 3.42 33283 (153) 3.36
8 60 10146 11677 (8526) 1.17 11633 (8436) 1.17 58422 (1131) 5.88 29270 (573) 2.94 29834 (691) 2.99 29223 (570) 2.94
8 none 10146 12124 (8248) 1.22 12078 (8164) 1.21 54687 (1988) 5.47 27355 (1004) 2.74 27999 (1229) 2.80 27347 (1000) 2.74
14 30 5798 6919 (4876) 1.22 6838 (4835) 1.20 63965 (41) 11.29 31983 (21) 5.65 32580 (40) 5.75 31983 (21) 5.65
14 60 5798 6803 (4877) 1.20 6752 (4842) 1.19 56196 (245) 9.92 28098 (123) 4.96 28645 (198) 5.06 28098 (124) 4.96
14 none 5798 7253 (4446) 1.28 7208 (4386) 1.27 43183 (671) 7.53 21592 (335) 3.77 22177 (453) 3.87 21592 (335) 3.77
20 30 4059 5240 (2945) 1.32 5170 (2918) 1.30 63018 (26) 18.95 31509 (13) 7.97 32056 (26) 8.11 31509 (13) 7.97
20 60 4059 5041 (3341) 1.27 4995 (3275) 1.25 56366 (97) 14.22 28183 (48) 7.11 28743 (82) 7.25 28183 (48) 7.11
20 none 4059 5203 (2811) 1.31 5179 (2778) 1.30 34814 (285) 8.68 17407 (142) 4.34 17998 (214) 4.49 17407 (142) 4.34

Indoor 2 30 38212 41237 (35599) 1.10 41225 (10612) 1.10 81616 (71193) 2.18 40815 (39557) 1.09 41609 (36585) 1.11 40808 (35898) 1.09
2 60 38212 41091 (35923) 1.10 41028 (10612) 1.10 85686 (67123) 2.28 42849 (41000) 1.14 43726 (34840) 1.17 42843 (33955) 1.14
2 none 38212 40784 (36339) 1.09 40678 (10625) 1.09 88988 (63823) 2.38 44500 (39984) 1.19 45528 (33535) 1.22 44494 (32470) 1.19
8 30 9553 11703 (8323) 1.25 11556 (8197) 1.23 60767 (195) 6.50 30421 (103) 3.26 31336 (140) 3.35 30390 (101) 3.25
8 60 9553 11522 (8464) 1.23 11440 (8346) 1.22 55229 (815) 5.85 27620 (408) 2.93 28670 (502) 3.04 27616 (408) 2.93
8 none 9533 11602 (8049) 1.24 11516 (7903) 1.23 49818 (1925) 5.31 24909 (962) 2.66 25926 (1114) 2.77 24909 (962) 2.66
14 30 5459 7815 (4044) 1.46 7686 (3988) 1.43 58513 (35) 10.93 29256 (17) 5.46 30242 (33) 5.65 29256 (17) 5.46
14 60 5459 7353 (4024) 1.37 7227 (3983) 1.35 52785 (219) 9.85 26393 (111) 4.93 27358 (156) 5.11 26392 (111) 4.93
14 none 5459 6937 (4128) 1.30 6871 (4047) 1.28 37708 (646) 7.04 18854 (323) 3.52 19782 (410) 3.70 18854 (323) 3.52
20 30 3821 6669 (1175) 1.77 6536 (1146) 1.74 56833 (20) 15.14 28446 (10) 7.57 29434 (19) 7.84 28421 (10) 7.57
20 60 3821 5936 (1824) 1.57 5824 (1791) 1.55 50182 (88) 13.50 25091 (44) 6.75 25985 (74) 6.99 25091 (44) 6.75
20 none 3821 5198 (2288) 1.39 5133 (2238) 1.37 32374 (382) 8.63 16187 (191) 4.32 17040 (264) 4.55 16187 (191) 4.32

Fig. 11. Experimental Results for MFC and MSTC in Weighted Terrain (“Max” = Cover Time or Cover and Return Time)

REFERENCES

[1] H. Choset. Coverage for robotics – a survey of recent results. Annals of
Mathematics and Artificial Intelligence, 31:113–126, 2001.

[2] G. Even, N. Garg, J. K̈onemann, R. Ravi, and A. Sinha. Min-max tree
covers of graphs.Operations Research Letters, 32:309–315, 2004.

[3] Y. Gabriely and E. Rimon. Spanning-tree based coverage ofcontinuous
areas by a mobile robot.Annals of Mathematics and Artificial Intelli-
gence, 31:77–98, 2001.

[4] M. Garey and D. Johnson.Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[5] N. Hazon and G. Kaminka. Redundancy, efficiency, and robustness in
multi-robot coverage. InProceedings of the International Conference on
Robotics and Automation, pages 735–741, 2005.

[6] J. Svennebring and S. Koenig. Building terrain-covering ant robots.
Autonomous Robots, 16(3):313–332, 2003.

[7] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributedcovering by
ant-robots using evaporating traces.IEEE Transactions on Robotics and
Automation, 15(5):918–933, 1999.

[8] X. Zheng, S. Jain, S. Koenig, and D. Kempe. Multi-robot forest coverage.
In Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS), pages 2318–2323, 2005.

[9] X. Zheng and S. koenig. Robot coverage of terrain with non-uniform
traversability. InProceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS), pages 2300–2309, 2007.

ACKNOWLEDGMENT

Parts of this article have been presented at the IEEE
International Conference on Intelligent Robots and Systems in
2005 [8] and 2007 [9]. We thank Gal Kaminka for interesting
discussions about Multi-Robot Spanning Tree Coverage and
multi-robot coverage in general. The research was partially
supported by NSF Grants IIS-0350584 and IIS-0413196 to
Sven Koenig. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

PLACE
PHOTO
HERE

Xiaoming Zheng

PLACE
PHOTO
HERE

Sven KoenigSven Koenig is an associate professor
in computer science at the University of Southern
California. Most of his research centers around tech-
niques for decision making (planning and learning)
that enable single situated agents (such as robots
or decision-support systems) and teams of agents
to act intelligently in their environments and exhibit
goal-directed behavior in real-time, even if they have
only incomplete knowledge of their environment,
imperfect abilities to manipulate it, limited or noisy
perception or insufficient reasoning speed. He is the

recipient of an NSF CAREER award, an IBM Faculty PartnershipAward, a
Charles Lee Powell Foundation Award, a Raytheon Faculty Fellowship Award,
an ACM Recognition of Service Award and a Fulbright Fellowship, among
others. He co-founded Robotics: Science and Systems, a general robotics
conference.

PLACE
PHOTO
HERE

David Kempe

IEEE TRANSACTIONS ON ROBOTICS 12

PLACE
PHOTO
HERE

Sonal Jain

