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Multi-Robot Coverage of
Weighted and Unweighted Terrain
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Abstract—One of the main applications of mobile robots is H e
terrain coverage: visiting each location in known terrain. Terrain e
coverage is crucial for lawn mowing, cleaning, harvesting, search- SEH= SEaERmREERRE:
and-rescue, intrusion detection and mine clearing. Naturally,
coverage can be sped up with multiple robots. In this article, RRRRRCACE" . EEAR:
we describe Multi-Robot Forest Coverage (MFC), a new multi-
robot coverage algorithm based on an algorithm by Even et al.
for finding a tree cover with trees of balanced weights. We then
extend MFC and an alternative existing multi-robot coverage 5
algorithm from unweighted terrain to weighted terrain. Our
theoretical results show that the cover time of MFC is at most
about sixteen and eight times larger than minimal in weighted =
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and unweighted, respectively, terrain. Our experimental resuls _—

show that the cover time of MFC is close to minimal in all tested Fig. 1. Example of Weighted Terrain

scenarios and smaller than the cover time of the alternative multi-

robot coverage algorithm. large cells with large cells with small cells with
colors weights weights

Index Terms—Cell Decomposition, Complexity, Multi-Robot
Coverage, NP-Hardness, Robot Teams, Spanning Tree Coverage
Terrain Coverage.
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I. INTRODUCTION

OVERAGE requires robots to visit each location in

known terrain once to perform some task. Examples
include lawn mowing, cleaning, harvesting, search-aisgue, Fig. 2. Model of Weighted Terrain
intrusion detection and mine clearing. It is frequentlyicese
to minimize the time by which coverage is completed. In
recent years, robotics researchers have investigatedisganWe generalize STC to Multi-Robot Forest Coverage (MFC), a
tree-based coverage algorithms in unweighted terrainrevheolynomial multi-robot coverage algorithm based on finding
the travel time is the same everywhere. The single-robot cav tree cover with trees of balanced weights, one tree for each
erage problem is solved with minimal cover time by Spannimpbot. We then extend both MSTC and MFC from unweighted
Tree Coverage (STC), a polynomial-time coverage algorithtarrain to weighted terrain, where the travel time is not the
that decomposes terrain into cells, computes a spannieg tsame everywhere, as shown in Figure 1, in order to extend
of the resulting graph, and makes the robot circumnavigatetheir applicability to more realistic situations. MSTC cha
[3]. Naturally, coverage can be sped up with multiple robotgeneralized relatively easily but cannot guarantee itsecov
The multi-robot coverage problem is to compute a robdime to be small. MFC is nontrivial to generalize because it
path for each robot so that the cover time (that is, largaestes a tree cover algorithm as a subroutine that is specific
travel time of any robot) is minimized. As we show in thigo unweighted terrain. We thus first generalize the tree rcove
article, this problem is NP-complete. Thus, one needs tmdesalgorithm and only then MFC. We prove that the cover time
polynomial-time multi-robot coverage algorithms with spb of MFC is at most about sixteen and eight times larger than
timal (but small) cover time. Hazon and Kaminka recentlyninimal in weighted and unweighted terrain respectivelyr O
generalized STC to Multi-Robot Spanning Tree Coveragxperimental results show that the cover time of MFC is close
(MSTC), a polynomial-time multi-robot coverage algorithmo minimal in all tested scenarios and smaller than the cover
[5]. While MSTC provably improves the cover time of STCtime of MSTC. MFC has the additional benefit that it tends
it cannot guarantee its cover time to be close to minimab return the robots close to their initial cells, facilitag their

collection and storage.
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large cells with weights ~ small cells with weights robot path with times STC MSTC
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Fig. 3. Simple Single-Robot Coverage Problem
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Fig. 4. Suboptimal Cover Time of STC Fig. 5. Example of STC Fig. 6. Example of MSTC

Each unblocked large cell has a positive integer weight that
corresponds to how difficult it is to traverse the large cetl & large cells and whose edges connect adjacent unblockeal larg
evenly divided into four small square cells. Each small ball cells. Second, STC finds a spanning tree of this graph. Third,
a weight that is equal to one quarter of the weight of the lar@&TC lets the robot move along the path that circumnavigates
cell, as shown in Figure 2. We call terraimweightedif the this spanning tree. For the team objective “Cover and Réturn
weight of all large cells is four, which implies that the wieig the robot completely circumnavigates the spanning treiitint
of all small cells is one and thus the travel time along amgturns to its initial small cell. For the team objective @0
robot path is equal to the number of moves. We call terraihe robot stops once all small cells have been visited, that i
weightedif the weights of the large cells can be arbitrarpne move earlier. Clearly, STC runs in polynomial time. The
positive integers. Thus, unweighted terrain is a specisé @d cover times (and cover and return times) of STC are minimal
weighted terrain. for single-robot coverage problems in unweighted terraines
Robots: The robots have the same size as the small celthe robot never enters any small cell twice [3].
They always know their current small cell and can move from Proposition 1: The cover times of STC in weighted terrain
their current small cell to any adjacent small cell in therfouare larger than minimal by at most the half of the largest
main compass directions without error in a time that is equakight of any small cell. The cover and return times of STC
to the average of the weights of the two small cells. (O weighted (and thus also unweighted) terrain are minimal f
analytical results can easily be adapted to other defimitiogingle-robot coverage problems terrain. The minimal cavet
such as a time that is equal to the maximum of the weights @fturn times are equal to the sums of the weights of all large
the two small cells.) Each move is atomic, that is, it needs ¢e||s.

be executed in full by a robot. The travel time along a robot  prgof: For the team objective “Cover,” the robot needs to
path is the sum of the times of the moves of the robot whendhter every small cell except for its initial small cell ans
moves along the path. The robots start in different largks cepnce and needs to exit every small cell except for its final
but are able to occupy the same small cell simultaneousfihall cell at least once. The final small cell of a robot that
without blocking each other. uses STC is next to its initial small cell but the best final ma

Team ObjectiveWe study two different team objectives.cell might have a larger weight. Thus, the cover times of STC
For the team objective “Cover,” the robots need to move $@n pe larger than minimal by at most the half of the largest
that each small cell is visited by at least one robot. Theieco weight of any small cell. For the team objective “Cover and
time is equal to the largest travel time along any robot patReturn,” the robot needs to enter and exit every small cell at
For the team objective “Cover and Return,” the robots need [g5st once. Assume that the robot path{ds, ..., s,), where

move so that each small cell is visited by at least one robgfve s; connects the two adjacent small ceisand c; 1.
and then return to their initial small cells. Their cover angl. ., — ¢, is the initial small cell of the robot.) Let the
return time is again equal to the largest travel time along aeight of small cellc; be w(c;) and the time of moves;
robot path. _ bet(s;) = (w(c;) + w(cir1))/2. Then, the travel time along
Figure 3 shows a complete single-robot coverage problefRe robot path IS t(si) = Sor (wle) +w(cip))/2 =
including the large cells with their weights, the small Se"Zﬂlw(ci), which ’i}, at most thle_ sum of the weights of all
with their weights, and the robot path with the times of thgmaj| cells. STC makes the robot enter and exit every small
moves for the team objective “Cover and Return.” The coveg|| exactly once. Its cover and return times are thus equal t
and return time is equal to the sum of the weights of all largRe sums of the weights of all small cells and thus minimal.

cells, namely 88. The sums of the weights of all small cells are equal to the
sums of the weights of all large cells. [ ]
Il. SPANNING TREE COVERAGE (STC) Thus, the cover times of STC are not necessarily minimal

Spanning Tree Coverage (STC) [3] solves single-robot cowm weighted terrain, as shown in Figure 4 for the single-tobo
erage problems. It was originally proposed for unweightzd t coverage problem from Figure 3 (the thick line shows the
rain but also applies unchanged to weighted terrain: FRBC  spanning tree), but it finds close-to-minimal cover timese T
constructs a graph whose vertices correspond to the urddockover and return times of STC are minimal in weighted terrain
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For illustration, Figure 5 shows the spanning tree and robot
path for the terrain from Figure 2 for one robot with the team
objective “Cover.” The cover time is 682 for STC. The robot
has to make one additional move to return to its initial small
cell for the team objective “Cover and Return” (shown with
a dashed line in the figure). The cover and return time is 688
for STC.

IV. COMPLEXITY OF MULTI-ROBOT COVERAGE

Coverage with multiple robots has received much less
attention than coverage with single robots, even thougfteno
results in smaller cover (and return) times. Unfortunatielis
computationally complex to minimize the cover (and return)
times for multi-robot coverage problems, as we show in the
following for two natural versions of multi-robot coverage
problems. We thus do not expect to be able to solve them with
minimal cover (and return) times in polynomial time, and it
becomes necessary to solve them with suboptimal cover (and
return) times.

Theorem 2:It is NP-complete to determine whether the
following two versions of multi-robot coverage problemsica
be solved with cover and return times (for the first version)
or cover times (for the second version) that are smaller than
a given value:

1) multi-robot coverage problems with robots for the
team objective “Cover and Return,” whereis part of
the input and the times of moving from one small cell
to an adjacent one are uniform; and

2) multi-robot coverage problems with two robots for the
team objective “Cover,” where the times of moving from
one small cell to an adjacent one can be non-uniform
(and large).

Proof: Both versions of the multi-robot coverage problem

are in NP since one can easily guess the robot paths and then

verify the travel times along them in polynomial time. To yeo
their NP-hardness, we reduce from partitioning problems.

1) The 3-RRTITION problem is defined as follows: Given
a positive integerB and positive integers,, ..., as,
strictly betweenB /4 and B /2 with Zf’;l a; = B-n, can
they be partitioned evenly into sets? The 3-ARTITION
problem is known to be strongly NP-complete [4], that
is, NP-hard even if the integers have sizes that are only
polynomial inn.

Given an instance of it, we construct a multi-robot
coverage problem with robots as follows: We start with
a “corridor” consisting of4n vertically adjacent large
cells, numbered from-n + 1 (bottom) to3n (top). For
i=1,...,3n, there is a “tunnel” ofz; - 6n horizontally
adjacent large cells. The tunnel is connected toithe
corridor cell. Theit" tunnel is to the left of the corridor
for odd: and to the right of the corridor for evénThen
robots start in corridor cellg, —1, ..., —n-+1, one robot

in each of the cells. This completes the construction,
which can be done in polynomial time. We claim that
the minimal cover time is at mod® - 24n + 16n if and
only if the given integers can be partitioned evenly into
n sets.

2)

If the given integers can be partitioned evenly inteets
S1,...,5Sn, then we let thg''" robot cover the*" tunnel

for eachi € S;, ending in its initial cell. It thus traverses
the tunnels for a travel time of at moEie& 4-a;-6n =

B - 24n, and the corridor for a travel time of at most
12n + 4n (where thedn is an upper bound on the time
to get to cell 1 of the corridor and back at the end). The
total travel time is thus at mod® - 24n + 16n, meeting
the requirement.

Conversely, if the robots cover all small cells with the
desired cover time, then lef; be the set of indices
such that thg*" robot is the first robot to cover the small
upper cell of the*® tunnel cell that is farthest away from
the corridor. These sets partition the given integers. The
total travel time of thg*" robot is at leas24n Yie s, @i
since it needs to traverse its tunnels in both directions to
return to its initial small cell, and needs two moves to
traverse each large tunnel cell. By assumption, the total
travel time of any robot is at mog® - 24n + 16n, which
implies thatziesj a; < B+ 2. Since both}", 5. as
and B are integers, we have th@ie& a; < B for all
setsS;. Sinced . | 3 e, ai = S a; = B-n, all
inequalities are equalities, and the ssfspartition the
given integers evenly.

This reduction has to be slightly adapted to prove the
NP-hardness of the second version of the multi-robot
coverage problem. TheARTITION problem is defined
as follows: Given a set of positive integers, can they
be partitioned evenly into two sets? TheRFITION
problem is known to be NP-hard if the integers can
be exponential im [4]. But then, building tunnels of
lengtha; - 6n cannot necessarily be done in polynomial
time. Instead, we collapse each tunnel to a single large
cell, with weight a; - 6n. Once we use non-uniform
cell weights, we can also avoid the requirement that the
robots return to their initial small cells, by adding two
more large “destination cells”, with weight&? - A,
whereA := ). a;. Since there are only two robots, we
only add two corridor cell$), —1 at the bottom, where
these two robots start. We claim that there is a valid
partition if and only if the robots can cover all cells in
time at most28n2A + 12nA + 4n.

If there is a partition(S, S), then we can assign one
robot all tunnel cellsi € S, and the other ali ¢ S.
Each robot gets one destination cell. The total time in
tunnel celli is a; - 24n (three transitions of cost; -

6n, and two of cost(a; - 6n)/2, each half of a move
to enter or leave the large tunnel cell), so the total of
all tunnel and corridor cells for each robot is at most
dn+ A/2-24n. Travel in the destination cell takes time
3-8n2A + (8n%A)/2 < 28n2A, for a total of at most
28n2A 4 12nA + 4n, meeting the desired bounds.
Conversely, if the time is at mo&8n2A + 12nA + 4n,
then each robot can only visit one destination cell, and
spends a total o28n2A there. Thus, each robot spends
at most12nA + 4n in tunnel and corridor cells. Define
S, S as in the previous proof. We next claim that i S,
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i.e., the first robot visits tunnel cells upper corner first, Assume without loss of generality that robat (ro and rs,
then it also visits the corresponding lower corner. For iespectively) is adjacent to robot (r; andrs, respectively) in
not, then each robot spends at least tifBea; in tunnel the counterclockwise direction and thdt, r2) is the largest
cell 4, and the total time spent between the two robots itnavel time along the segments. (Robgisandr, are identical
all other tunnel cells is at Ieagj# a; - 24n. But then, if there are only three robots.) We distinguish several €ase

the total time they spend is at leastnA + 12na; > 1) Case 1: If the travel time along each segment is at most
24nA+8n, so at least one of them must spend more than i of the travel time along the path, then MSTC lets
12nA 4 4n in corridor and tunnel cells, a contradiction. each robot move counterclockwise along the segment

Given that each robot visits both of the far two cells of adjacent to it.
each tunnel cell, it must spend at leddha; in tunnel 2) Case 2: Ift(ro,73) < t(ra,r1), then MSTC lets robot

cell i. Thus, the first robot spends at le@sf. g 24na; in ro first move counterclockwise until it is in an adjacent
its tunnel cells, and the second one at leaist 5 24na;. small cell to robotr; (i.e. it meets robots) and then
Because) ;. g 24na; < 12nA+4n, and all numbers are move clockwise, lets robot; first move clockwise until
integers, we get that ;. s a; < A/2, and similarly for it meets robotr, and then move counterclockwise, and
>_ics- This implies that(S, S) is a partition. lets all other robots move counterclockwise.

[ | 3) Case 3: Ift(rq,r3) > t(r4,71), then MSTC lets robot,

The first version of the multi-robot coverage problem is first move counterclockwise until it meets robgt and
for unweighted terrain but the second version is for a more  then move clockwise, lets robet first move clockwise
general version of weighted terrain than we consider in the until it meets robot-, and then move counterclockwise,
following. Currently, it is an open problem whether the first and lets all other robots move clockwise.
version of the multi-robot coverage problem is NP-hardf&rt  £,; the team objective “Cover,” the robots move as given
team objective “Cover.” Itis also an open problem whether thy,,\e and stop once all small cells have been visited. For
first version is NP-hard for a fixed number of robots, althoughe team objective “Cover and Return,” the robots move as
we conjecture it to be. given above and, once all small cells have been visitedrrretu

to their initial small cells by moving either backward along
V. MULTI-ROBOT SPANNING TREE COVERAGE (MSTC)  their segments (MSTC) or along paths with minimal travel

An overview of multi-robot coverage algorithms is giveﬁime_s from their current small cells to the_ir_initial smadlis
in [1]. Many multi-robot coverage algorithms are for robot§‘3pt|rn|zed MSTC). Each small c_e!l is visited by only one
that interact and plan only locally [7], often called ant ot robot, so thgre are never any collisions or blockages. Glear
[6], even though global planning can lead to significanthlSTC runs in polynom|al. time. _ _ i
smaller cover (and return) times since it allows the robots 1neorem 3:The cover times of MSTC in weighted terrain
to coordinate much better. Recently, STC was generaliziQj three or more robots are at least about a facta/éf +¢)
to Multi-Robot Spanning Tree Coverage (MSTC) [5]. (Thémaller than the cover times of STC, whefds the ratio of
backtracking version of) MSTC computes suboptimal covdpe largest weight of any large cell and the sum of the weights
(and return) times in polynomial time for multi-robot comge  ©f @l 1arge cells. _
problems in unweighted terrain, as follows: MSTC first com-  Proof: Let wy,., be the largest weight of any large cell
putes the same spanning tree as STC, and considers the fafhvsum b€ the sum of the weights of all large cells (which
that circumnavigates the spanning tree. Each robot folthes 'S €qual to the travel time along the path that circumnaeigat
segment of the path counterclockwise ahead of it, with of@e Spanning tree). Thep = wmaz /Wsum.-
exception: To improve the cover times, the longest segngent i 1) Case 1: If the travel time along each segment is at most
divided evenly between the two adjacent robots. A few small  half of the travel time along the path that circumnavi-
adjustments, detailed in [5], then ensure that MSTC reduces gates the spanning tree, then MSTC lets each robot move
the cover times of STC in unweighted terrain by a factor of  along the segment adjacent to it in the counterclockwise
at least two for three or more robots. direction. The travel time of each robot and the cover

We now generalize MSTC to weighted terrain, assuming  time of MSTC thus is at mosby, /2.
for simplicity that there are three or more robots: First, MS  2) Case 2: MSTC lets robaet, first move counterclockwise
constructs a graph whose vertices correspond to the urddock until it meets robotrs. The sum of the travel times of
large cells and whose edges connect adjacent unblockesl larg  robotsr, and 5 until they meet is at most(rq, r3).
cells. This graph needs to be connected. Second, MSTC finds Thus, robotsr, and r3 meet after a travel time of at
a spanning tree of this graph. Third, MSTC splits the path most ¢(ra,73)/2 + Wmae /4. The termw,,,.,/4 takes
that circumnavigates this spanning tree into segmentsdagtw into account that each move is atomic, and the robots
the initial small cells of the robots. The number of segments  might thus not be able to split the travel time evenly
is equal to the number of robots. The travel time along a  between them. MSTC lets robet then move clock-
segment is the sum of the times of the moves of a robot when wise until it meets robot-;. The sum of the travel
it moves along the segment. Letr,r’') be the travel time times of robotsr, and r; until they meet is at most
along the segment from the initial small cell of roboin the t(re,r3) /24 Wmae /4+t(re,73) /24 Wmaw /4 +E(r1,72).
counterclockwise direction to the initial small cell of wh’. Thus, robotsry and r; meet after a travel time of at
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MFC MSTC
most (t(TQa 7”3)/2 + wmax/4 + t(7“2; 7"3)/2 + Wmaz /4 + cover time = 15 cover time = 9

t(r1,72))/2 + Wmaz/4 = (t(re,73) + t(r1,72))/2 + ®\®—}—§—0—‘ r@\@—}—O—Oj
Winan/2 < Wsum /2 + Wimaz /2 = (1 + ¢)Wsum/2 and P [t
their travel times are thus at mddt+¢)wsym /2. MSTC  Fig. 8. MFC and MSTC versus STC in Unweighted Terrain
lets robotrs first move clockwise until it meets robo

and then move counterclockwise. Assume without loss
of generality that robots is adjacent to robot; in ©n€ tree for each robot and lets each robot move along the path

the counterclockwise direction. (Robots and r, are that circumnavigates its tree, as follows: First, MFC couds

identical if there are only four robots, and robots a graph whose vertices correspond to the unblocked lartge cel
and r, are identical if there are only three robots.) pand whose edges connect adjacent unblocked large celks. Thi

similar argument as for robat, then shows that the graph is allowed to be disconnected, so long as each of its
travel time of robotr; is at Most: (1o, 73) /2 Winae /4+ components contains at least one robot. Second, MFC finds a

t(ra,13) /24 Wimag [A+(r3, 75) < Weum 2+ Wmaz/2 = rooted tree cover of this graph in polynomial time, where the
(1 + @) Wsum/2 since t(r 7‘2)_> (ws/um/Q and thus roots are the vertices that correspond to the large cells tha
t(ra,73) + t(r3,75) < Weum /2. MSTC lets every other contain the initial small cells of the robots. The roots thus

robot move counterclockwise and their travel time i§orrespond to the robots. A rooted tree cover of this graph
thus at most the travel time along the segment in thdf a forest of trees with exactly one tree for each root. The
counterclockwise direction which is at mogt,,,,/2. €S can share vertices and edges. Every vertex is in at leas

Thus the travel time of each robot and the cover timf@€ tree. Third, MFC lets each robot move along the path
of MSTC is at most(1 + ¢)wsum /2. that circumnavigates its tree. For the team objective “Cove

3) Case 3: Case 3 is just a mirror image of Case 2. and Return,” each robot completely circumnavigates ite tre

Let £.,, be the cover time of STC an,... be the cover time until it returns to its initial small cell. For the team objre

“Cover,” the robots stop once all small cells have beenaefksit
of MSTC. Then, we have shown théfie < (1+ ¢)wsum /2 Clearly, MSTC runs in polynomial time. The main question is

in all three cases. Thug,,sic < (1 + @)wsum/2 < (1 + . . . )
o ‘ - to how determine a suitable rooted tree cover in polynomial
0)(Lste + Wmaz /)2 = (14 O)ste/2+ (14 ) wmaz /8 since 0 poly
- .

tstc 2 Wsum — wma:r/4-

For illustration, Figure 6 shows the spanning tree and robgt Unweiahted Terrain
paths for the terrain from Figure 2 for four robots with the™ 9
team objective “Cover.” The cover time is 332 for MSTC. In unweighted terrain, we use the tree-cover algorithm by
The cover and return time is 664 for MSTC and only 394 fdgven et al. [2]. We define theeightof a tree to be the number
optimized MSTC. This example demonstrates that the covfrits edges. The weight of the rooted tree cover is the larges
(and return) times of MSTC do not necessarily improve witieight of any of its trees. The problem of finding a weight-
an increasing number of robots since MSTC makes On|y tvmlnlmal rooted tree cover is NP-hard [2] MFC therefore uses
robots exit the bottom-most row of large cells through th@ Polynomial-time tree-cover algorithm to find a rooted tree
narrow passage. Additional robots in the center of the botto Cover with a weight that is at most a factor of four larger
most row do not shorten the travel times of these two robot§an minimal. If there is only one robot, then MFC reduces
The cover (and return) times of MSTC become arbitrarily bd@ STC and thus minimizes the cover (and return) times. If
compared to the minimal ones if one expands the terrain abd@gre is more than one robot, then recall that MSTC reduces
the narrow passage and adds robots in the center of the bottd§ cover times of STC by a factor of at least two for three
most row. For then all of the robots would have to exit ther more robots. MFC cannot make such a strong worst-case
bottom-most row of |arge cells to minimize the cover (anguarantee about how small its cover times are with reSpeCt to
return) times. Thus, MSTC cannot guarantee small cover (atf¢ minimal cover times of a single robot.
return) times, which is due to the fact that the construction Proposition 4: The cover times and cover and return times
of the spanning tree does not take into account that it will K& MFC in unweighted terrain cannot be larger than the ones
split up afterwards, resulting in unbalanced travel timethe of STC.
robots. This observation motivates our idea of constrgctin Proof: The cover times (and cover and return times) of
tree cover with one tree for each robot right away, where WAFC in unweighted terrain cannot be larger than the ones of
ensure during the construction that the weights of the treedC because MFC makes every robot circumnavigate a tree

and thus the travel times of the robots are balanced. that can be extended to a spanning tree. =
Figure 8 shows an example of unweighted terrain where the

cover time of MFC is almost equal to the cover time of STC
given the corridor is sufficiently long, even though the aove

We now generalize STC to Multi-Robot Forest Coveragiéme of MSTC is only half the cover time of STC. However,
(MFC) [8]. MFC computes suboptimal cover times (and covéviFC can make a much more powerful guarantee than MSTC,
and return times) in polynomial time for multi-robot covgea namely a worst-case guarantee about how small its covestime
problems. MSTC determines one tree, splits the path thae with respect to the minimal cover times for the number
circumnavigates it into one path for each robot and lets eashavailable robots: Its cover times are only a constantofact
robot move along its path. MFC, on the other hand, determinlesger than minimal.

V1. MULTI-ROBOT FORESTCOVERAGE (MFC)
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MFC (Robot 1) MFC (Robot 2) MFC (Robot 3) MFC (Robot 4)
cover time = 217 cover time = 216 cover time = 225 cover time = 216
cover and return time = 256  cover and return time = 256  cover and return time = 256  cover and return time = 256
[ ———]

®—

Fig. 7. Example of MFC

Theorem 5:The cover times (and cover and return timesjt most the largest weight of any small cell, while the cover
of MFC in unweighted terrain are at most about a factor @iimes of MFC are at most the weights of the largest trees and
eight larger than minimal. thus at most the sum of the weights of all large cells. Thus,

Proof: Let M be the weight of the rooted tree cover foundhe cover times of MFC can be larger than the cover times
by the tree-cover algorithm of Even et alV, the weight of of STC by at most the largest weight of any small cell. The
the weight-minimal rooted tree covef) the cover time of cover and return times of STC are equal to the sum of the
MFC, P the minimal cover time, and) the minimal cover weights of all large cells, while the cover and return timés o
time if the robots only need to cover the upper left smaMFC are equal to the weights of the largest trees and thus at
cells of all unblocked large cells. Because circumnaviga most the sum of the weights of all large cells. Consequently,
tree of weightM requires enteringtM/ + 4 small cells, we the cover and return times of MFC cannot be larger than the
get thatO < 4M + 4, which is bounded by 6N + 4 by the cover and return times of STC. [ ]
approximation guarantee proved in [2]. In tudy < Q since Theorem 7:The cover times (and cover and return times)
the weight-minimal rooted tree cover (shifted slightly umda of MFC in weighted terrain are at most about a factor of
to the left) connects exactly all of the upper left small sell 16(1 + ¢|K|) larger than minimal, whergK| is the number
The factor of two results from the fact that traversing eaaff robots andp is the ratio of the largest weight of any large
edge between large cells requires entering two small o&fs. cell and the sum of the weights of all large cells.

@ < P trivially, we can combine these results to gét< Proof: Let M be the weight of the rooted tree cover found
AM +4 < 16N +4 < 8Q +4 < 8P +4. The proof continues by TREE COVER,N the weight of a weight-minimal rooted
to hold if each occurrence of cover time is replaced with coveree cover,0O the cover time of MFC,P the minimal cover

and return time. B time, and@ the minimal cover time if the robots need to visit
_ _ only the upper left small cells of all large cells. Furthemso
B. Weighted Terrain let w,,q. be the largest weight of any large cell.

The tree-cover algorithm by Even et al. [2] does not apply Because the robots visit all small cells and return to their
to weighted terrain. In weighted terrain, we therefore useiritial small cells when they circumnavigate their treese t
new tree-cover algorithm TREE COVER that we describe iesulting cover time cannot be larger than the weight of the
Section VII. Each vertex now has a weight equal to the weigtnoted tree cover. Thereforé) < M. By Theorem 11 below,
of its large cell. We define the weight of a tree to be the sum ®8REE COVER finds rooted tree covers with a weight that
the weights of its vertices. The weight of the rooted treeecovis at most a factor ofi(1 + ¢|K]|) larger than minimal, so
is the largest weight of any of its trees. The problem of figdinM < 4(1 + ¢|K|)N.

a weight-minimal rooted tree cover remains NP-hard, as weThe key part of the proof is to bound. Consider the paths
prove in Section VII. MFC therefore uses this polynomiatdi of the robots if they need to visit only the upper left smallse
tree-cover algorithm to find a rooted tree cover with a weiglaff all large cells. Construct a rooted tree cover where the tr
that is at most a factor of(1 + ¢|K|) larger than minimal, of a robot contains exactly the vertices that correspondheo t
where |K| is the number of robots and is the ratio of the large cells that contain the upper left small cells visitgd b
largest weight of any large cell and the sum of the weights tife robot. The weight of each tree divided by four is equal to
all large cells. We now prove theorems of MFC with TREEhe sum of the weights of all upper left small cells visited by
COVER in weighted terrain that are similar to those that widae robot. The sum of the weights of all upper left small cells
proved already for MFC with the tree-cover algorithm by Evewisited by the robot is at most the travel time of the robotplu
et al. [2] in unweighted terrain. the largest weight of any small cell. For the robot has torente

Proposition 6: The cover times of MFC in weighted terrainand exit all upper left small cells except possibly for it&ial
can be larger than the ones of STC by at most the largsstall cell (if it starts in one), which it does not need to ente
weight of any small cell. The cover and return times of MF@nd its final small cell (if it ends in one), which it does not
in weighted terrain cannot be larger than the ones of STC.need to exit. Thus, the weight of this rooted tree cover (and

Proof: The cover times of STC in weighted terrain carthus also the weight of a weight-minimal rooted tree cover)
be smaller than the sum of the weights of all large cells Wiivided by four is at most the minimal cover time if the robots
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need to visit only the upper left small cells of all large sell

Proof: To prove the NP-hardness, we reduce from the

plus the largest weight of any small cell. This lets us bourBiN-PACKING problem, which is defined as follows: Given a

N/4 S Q+wmam/4-

set of elements with given integer sizes and a fixed number

Finally, @ < P holds trivially, and we can combine theseof bins, each with the same given integer capacity, can each

bounds to geD < M < 4(1 + ¢|K|)N < 16(1 + ¢|K|)Q +

element be placed in exactly one of the bins so that the sum

414 | K| )wmaz < 16(1+@|K|)P+4(1+ ¢|K|)wmas. The of the sizes of the elements in each bin does not exceed its

proof continues to hold if each occurrence of “cover time” isapacity?

replaced with “cover and return time”. ]

Given an instance of it, we construct a yes/no version of the

The ratio¢ is close to zero for terrain with many large cellSVEIGHT-MINIMAL ROOTED TREE COVER problem, namely
of about the same weight. For exampie= 0.0814 for the determining whether a given grapgh has aK-rooted tree

terrain from Figure 2. Thenl6(1 + ¢|K|) ~ 16 for a small

cover whose weight is at most a given constant. We give our

number of robot§ K|. Thus, the cover times (and cover andeduction as follows: We create a completely connectedigrap
return times) of MFC are at most about sixteen times largér with one vertex for each element (whose weight is equal to

than minimal.

the size of the element) and one vertex for each bin (whose

For illustration, Figure 7 shows the trees and robot patlgight is one). The set of roofs contains exactly the vertices
for the terrain from Figure 2 for four robots, together witHor the bins. This completes the construction, which can be
the cover time and cover and return time for each robot. Thene in polynomial time.
cover time is 225 and the cover and return time is 256 for If the weight of aK-rooted tree cover is at most the given

MFC.

capacity plus one, then placing each element in one of its

“root bins” will meet the capacity constraints. Similarl,

VIl. WEIGHT-MINIMAL ROOTED TREE COVERS

We now modify the tree-cover algorithm by Even et al. [Zel
(and the proofs in that paper) to work on graphs with weight
vertices rather than weighted edges. We state the trea-col®
algorithm (called TREE COVER), prove its properties an
describe how MFC uses it.

each element can be placed in exactly one of the bins so that
he sum of the sizes of the elements in each bin does not
d<ceed its capacity, then one can make the tree rooted in the
rtex of a bin contain the vertices of the elements that the

Bin contains. Thus, the weight of a weight-mininfétrooted

tree cover is at most the given capacity plus one as wdl.

D. Tree Cover Algorithm

A. Tree Cover Problem

TREE COVER takes as input a gragh, a set of roots

We define the WEIGHT-MINIMAL ROOTED TREE COVER K and a boundB > wy,... It either reports SUCCESS and
problem as follows: Leti = (V, E) be a graph with weighted returns ak-rooted tree cover of grapd with weight at most

vertices, wherew(v) is the integer weight of vertex € V.

4B or reports FAILURE, in which case there does not exist a

Let K C V be a set of distinguished vertices, called roots. A-rooted tree cover of grapfy’ with weight at mostB/(1 +
K-rooted tree cover off is a forest of K| trees, which can ¢|K|). TREE COVER operates as follows:

share vertices and edges. The set of their roots must be equal)
to K, and every vertex iV’ has to be in at least one tree. The
weight of a tree is the sum of the weights of its vertices. The
weight of a K-rooted tree cover is thiargestweight of any

of its trees. Given a grapfy = (V, E) with weighted vertices
and a setk’ C V of roots, find a weight-minimal-rooted
tree cover of graplt.

2)

B. Definitions

We use the shorthand®,u, = ),y w(V), Wnae =
maxyey w(v) and ¢ 1= Wmaz/Wsum (&S used earlier). Fur-
thermore, we define the weight of a path in the graph to be the
sum of the weights of its vertices, except for its end vestice
We define the distance between two trees in the graph to be
the minimal weight of any path that connects some vertex in
one of the trees to some vertex in the other tree.

C. Complexity

We show that the WIGHT-MINIMAL ROOTED TREE
CovVER problem is NP-hard, which provides our motivation
for designing polynomial-time approximation algorithms.

Theorem 8:1t is NP-hard to find weight-minimak’-rooted
tree covers for graphé&.

Contract all roots into a single vertex, find any spanning
tree of the resulting graph, and then uncontract the single
vertex again, splitting the spanning tree infg| trees.
Decompose each tree recursively into zero or more non-
leftover subtrees and one leftover subtree. We call the
following decomposition procedure once for each tree
from the previous step. The decomposition procedure
removes vertices from the given tree as it generates the
non-leftover subtrees. When it terminates, we declare
the leftover subtree to be the root of the given tree if
all vertices have been deleted. Otherwise, we declare
the leftover subtree to be the remaining tree (formed by
the non-deleted vertices). The decomposition procedure
applies to a tree rooted in We distinguish three cases:
Case 1:The weight of the tree rooted inis less than

B. Then, the procedure simply returns.

Case 2:The weight of the tree rooted in is in the
interval [B, 2B). Then, one non-leftover subtree consists
of the tree rooted im. We remove the subtree from the
tree rooted in- (leaving the empty tree) and return.
Case 3:The weight of the tree rooted in is at least
2B. We distinguish three subcases:

Case 3a: The weights of all trees rooted in children of
r are less thanB. Then, we pick a number of trees
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rooted in children ofr so that the weight of the tree Theorem 10:If TREE COVER reports FAILURE, then
consisting ofr and these trees is in the intery&l, 2B). there is noK-rooted tree cover of graply with weight at
One non-leftover subtree consistsofind these trees. mostB/(1 + ¢).
We remove the subtree except fofrom the tree rooted Proof: Assume that a weight-minimal-rooted tree
in = and recursively apply the decomposition procedurever 7' of graph G has weightB’ < B/(1 + ¢€). Let L be
to the remaining tree rooted inin order to find the other the set of non-leftover subtrees created in Step 2 of TREE
non-leftover subtrees. It is possible to pick a number @OVER andK (1) C K be the set of roots at distance at most
trees rooted in children of so that the weight of the tree B from subtreel € L. We show that (J,.,. K ()| > |L’| for
consisting ofr and these trees is in the interJ&,2B) every set of non-leftover subtreds C L. Step 3 of TREE
since w, < wme: < B and the weights of all trees COVER can then match all non-leftover subtrees according to
rooted in children ofr are less thamB but the weight Hall’s Marriage Theorem. Therefore, TREE COVER reports
of the tree rooted i is 2B or larger. SUCCESS.
Case 3b: The weight of at least one tree rooted in aConsider any’ C L. Let T’ C T be the set of trees in the
child of r is in the interval[B,2B). Then, we pick optimum solution which have at least one vertex in common
such a tree. One non-leftover subtree consists of thisth at least one of the non-leftover subtreedin Let w(L’)
tree. We remove the subtree from the tree rooted inbe the sum of the weights of all non-leftover subtreed.in
and recursively apply the decomposition procedure timdw(7") be the sum of the weights of all treesif.
the remaining tree rooted inin order to find the other ~ We first lower bound (J,.,, K ()| > |T"|. For every tree
non-leftover subtrees. t € T', there exists at least one non-leftover subtrieel’ that
Case 3c: Otherwise, the weight of at least one tree rootkds at least one vertex in common witl and the root of are
in a child ofr is 2B or larger. Then, we recursively applyat distance at mosB’ < B/(1 + ¢) < B. Therefore/ can be
the decomposition procedure first to such a tree rootesatched to the root of. Overall, the setJ,,, K(I) contains
in a child of r and then to the remaining tree rooted inhe roots of all trees ifi”, implying that|J,. ., K(1)| > |T"].
r in order to find the non-leftover subtrees. Next, we want to show thgfr’| > |L’|, which we do by
3) Find a maximum matching of all non-leftover subtreegelating the weights of the corresponding sets. Because the
to the roots, subject to the constraint that a non-leftovereights of all non-leftover subtrees are in the intefval2B),
subtree can only be matched to a root if the non-leftovend the weights of all trees i’ are at mostB’, we obtain
subtree and the leftover tree of the root are at distantieatw (L) > B|L'| andw(T") < B'|T'|.
of at mostB. To relatew(L’) andw(T"), we observe that every vertex in
4) If any non-leftover subtree cannot be matched, repatbn-leftover subtrees if is also in at least one tree ifif. The
FAILURE. Otherwise, report SUCCESS and, for eachon-leftover subtrees i’ can contain at mostZ.’| duplicate
root, return the tree consisting of the leftover subtree @krtices. The reason is that every non-leftover subtreatede
the root, the single non-leftover subtree (if any) matcheasy Step 2 of TREE COVER contains at most one vertex that
to the root, and a weight-minimal path (if any) from thehas not yet been removed from all trees created in Step 1 and
non-leftover subtree to the leftover subtree. thus could be a duplicate vertex. The trees created in Step
1 share at most their roots, and Step 2 removes all vertices
of a non-leftover subtree from its tree, except possiblytiier
root of the non-leftover subtree in Case 3a, when it credes t
Clearly, TREE COVER runs in polynomial time and eithepon-leftover subtree. Since each of these duplicate esrtias

reports SUCCESS or FAILURE. It is also easy to see th@feight at mostw,,.., we obtain the bound(L’) < w(T") +
the weights of all non-leftover subtrees (if any) returned bU}ma.r| .

the decomposition procedure in Step 2 of TREE COVER for Finally, to boundw,,.,, We observe that at best, the sum
a given tree are in the intervdB,2B). The weight of the of the weights of all vertices could be split evenly among the
leftover subtree is in the interval, B). Also, the root of trees; hence’ > wyum/|K|, which implies thatw,,., =

the tree is in the leftover subtree. We now prove the majp,, =« < |K|B’¢$. Combining all these bounds, we get
properties of TREE COVER. For notational convenience, we

E. Properties

write ¢ i 6| K], BIT| = w(T') = (L) = ||
Theorem 9:If TREE COVER reports SUCCESS, then it > BIL'| - IK/\B ¢|/L|
returns ak-rooted tree cover of grapli with weight at most = (B—I|K|B'¢)|L|
4B. > (B'(1+¢) = B'e)|L|
Proof: If TREE COVER reports SUCCESS then it re- = B
turns, for each root, the tree consisting of the leftovertisgd 5nq thus| Ue,, K(1)| > |T'| > |L/). -

of the root of weight at mosB, the single non-leftover subtree

(if any) matched to the root of weight at mo2B, and a o

weight-minimal path (if any) of weight at mos8 from the F Application

non-leftover subtree to the leftover subtree. The weigletaah Theorem 11:There is an algorithm finding & -rooted tree

tree is thus at mostB. cover of graphG with weight at most a factor od(1 + ¢)
m larger than minimal.
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Proof: We perform binary search on the intervaterrain with walls and doors [indoor]. The position of thellwa
[Winaz, Wsum) 10 find a small value ofB for which TREE and doors are fixed, but doors are closed with 20 percent
COVER reports SUCCESS. We start with the lower boungrobability. We vary the number of robots from 2, 8, 14 to
wmaz and the upper bound,,,. We then repeatedly run 20 robots. We ensure that no two robots are placed in the
TREE COVER with B set to the average of the lower andame large cell by randomly choosing different large celts f
upper bound. If TREE COVER reports FAILURE, then we setach robot and placing the robots in their lower left small
the lower bound taB. Otherwise, we set the upper bound teells. A clustering percentage parameterdetermines how
B. We stop once the difference of the upper and lower bousttongly the initial large cells of the robots are clusteréde
is less than(1 + ¢). Let b be the weight of a weight-minimal first robot is placed uniformly at random. Subsequent robots
K-rooted tree covefl' of graph G. Because the weight of are then placed within an area centered at the first robots&ho
each unblocked large cell is a positive intedek: 1. Let B; height and width are (approximatelyf% of the height and
be the lower bound ané, be the upper bound of the binarywidth of the terrain. Thus, a small value efresults in a high
search after termination. Lé® = [B,/(1 + ¢)]. We consider clustering of initial large cells, while: = 200 is equivalent
the following two cases. to no clustering at all [none]. For each scenario, we report

1) TREE COVER reports SUCCESS with set to (1 + data that are averaged over at least 50 runs with randomly
G)B_ If B, = wmae (the initial lower bound), then the generated terrain (if applicable) and randomly generatitichli
fact thatb > wyae /(14 €) implies thatb > B; /(1 +¢). large cells. All cover (and return) times are rounded to the
Otherwise, the definition of binary search implies thdiearest integer.
TREE COVER withB set toB; reports FAILURE, and ~ We report our experimental results for unweighted terrain
Theorem 10 implies thai > B; /(1 + ¢). in Figure 10 and for weighted terrain in Figure 11. The tables
Because is an integer, we in fact get the stronger bountgport for each scenario a lower bound that represents the
b > [B;/(1+¢)] = B. The weight of thek -rooted tree idealized cover (and return) time [ideal max]: It simply idies
cover returned by TREE COVER with setto(1+¢)B  the sum of the weights of all large cells by the number of

is at most4(1 + ¢)B (according to Theorem 9), which robots (and, for unweighted terrain, subtracts one). Tealid
in turn is bounded byi(1 + €)b. That is, the weight is cover (and return) times would result if no robot needed to

at most a factor ofi(1 + ¢) larger than minimal. pass through already visited small cells. The table alsortep

2) TREE COVER reports FAILURE wittB setto(1+¢)3. the smallest [min] and largest [max] travel time of any robot

Theorem 10 thus implies that> (1+¢€)B, /(1+¢) = B, for each combination of a multi-robot coverage algorithm,
and sinceb is an integerb > B 4+ 1 =: B’. Since Scenario and team objective. The largest travel times areleq

(B, — B))/(1 4+ ¢€) < 1 according to the termination to the cover (and return) times, and the difference betwken t
condition of the binary searct’ > B;/(1+¢) +1 > Smallest and largest travel times gives an indication of how
B,/(1+4¢). Thus,(1+¢)B’ > B, and TREE COVER balanced the travel times of the robots are. In addition, the

reports SUCCESS withB set to(1+¢)B’. The weight of table also reports the ratios of the actual travel times &ed t
the K -rooted tree cover we have with set to(1+¢)B’ ideal cover (and return) times [ratio], giving the upper bdsi
is at mostd(1+¢)B’ < 4(1+¢)b, according to Theorem On how much the actual cover (and return) times are larger

9. This is at most a factor af(1+¢) larger than minimal. than minimal. The ratio is indeed only an upper bound, since
the ideal may not be achievable. For instance, several sobot

The binary search runs in polynomial time because TRERUSt visit the same small cells in the example from Figure 7.
COVER runs in polynomial time and is ruflog,((wsum — We make the following observations: The ratios of the
2 sum

)/ <1 < -1 times, which is polynomial cover _(and return) times and the ideal cover (and return)
ilg the)gz: ;ptlhe_ inopgjtw' * poly times increase with the number of robots for both MFC and

MSTC since the overhead (defined as the number of already
visited small cells that a robot passes through) increasds w
the number of robots. The ratios increase very slowly with
We compare MFC and (the backtracking version of) MST@e number of robots for MFC, but much faster for MSTC,
experimentally. We evaluate them on both team objectivasplying that the cover (and return) times of MFC remain
namely "Cover” and "Cover and Return”, and in differentlose to minimal for large numbers of robots. The ratios
scenarios, namely different kinds of terrain [terrainffatient change insignificantly with the amount of clustering for MFC
numbers of robots [robots], and different clustering of thieut a lot for MSTC, implying that the cover (and return) times
robots [clustering]. The size of the terrain is alwaysx 49 of MFC remain small if robots start in nearby small cells —
large cells. The weight of each unblocked large cell ia common situation since robots are often deployed or stored
weighted terrain is chosen from the weights 8, 16, 24, ..tggether. The ratios change insignificantly for MFC if tharte
80. Figure 9 shows the three different kinds of terrain usexdbjective is changed from “Cover” to “Cover and Return”, but
in the experiments. The first kind of terrain is empty [emptyjncrease by about a factor of two for non-optimized MSTC
The second kind is an outdoor-like terrain where walls al@ecause the robot with the largest travel time has to bazktra
randomly removed from a random depth-first maze until thdong most of its robot path. This implies that all robots are
wall density drops to 10 percent, resulting in terrain witklose to their initial small cells when coverage is complete
random obstacles [outdoor]. The third kind is an indooelikfor MFC, which facilitates their retrieval. The cover timeé

VIIl. EXPERIMENTAL RESULTS
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Fig. 9. Screenshots of Different Kinds of Terrain
Terrain | Robots | Clustering Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”
Max_ (Min) | Ratio | Max (Min) | Ratio Max_ (Min) | Ratio | Max (Min) | Ratio || Max (Min) | Ratio | Max (Min) | Ratio
Empty 2 30 4801 4878 (4731)| 1.02 | 4877 (4730)] 1.02 || 10538 (8666)| 2.19 | 5269 (5048) 1.10 || 5337 (4410)| L.11 | 5269 (4346)| 1.10
2 60 4801 4886 (4720)| 1.02 | 4885 (4719)| 1.02 || 10889 (8315)| 2.27 | 5445 (5095)| 1.13 || 5513 (4241)| 1.15 | 5445 (4180)| 1.13
2 none 4801 4888 (4725)| 1.02 | 4886 (4723)| 1.02 || 11057 (8147)| 2.30 | 5529 (5161)| 1.15 || 5602 (4168)| 1.17 | 5529 (4107)| 1.15
8 30 1200 1399 (838) | 1.17 | 1396 (837) | 1.16 || 7499 (73) | 625 | 3752 (38) | 3.13 || 3817 (45) | 3.18 | 3751 (38) | 3.3
8 60 1200 1415 (904) | 118 | 1414 (902) | 1.18 || 6923 (154) | 577 | 3462 (77) | 2.80 || 3530 (93) | 2.95 | 3462 (77) | 2.89
8 none 1200 1394 (956) | 1.16 | 1391 (953) | 1.16 || 6411 (248) | 5.34 | 3210 (127) | 2.68 || 3281 (146) | 2.73 | 3206 (124) | 2.67
14 30 685 841 (431) | 1.23 | 836 (431) | 122 || 7369 (5) | 10.76 | 3685 (2) | 5.38 || 3756 (5) | 5.48 | 3685 (2) | 538
14 60 685 819 (522) | 1.20 | 815 (522) | 1.19 || 6774 (17) | 9.89 | 3387 (8) | 4.94 || 3461 (16) | 5.05 | 3387 (8) | 4.94
14 none 685 830 (513) | 1.21 | 824 (511) | 1.20 || 6005 (49) | 877 | 3002 (25) | 4.38 || 3072 (40) | 4.48 | 3002 (25) | 4.38
20 30 479 615 (307) | 1.28 | 609 (307) | 127 || 7224 (3) | 1508 | 3612 (1) | 754 || 3685 (3) | 7.69 | 3612 (1) | 7.54
20 60 479 604 (332) | 1.26 | 599 (332) | 125 || 6728 (9) | 14.05| 3364 (4) | 7.02 || 3439 (9) | 7.18 | 3364 (4) | 7.02
20 none 479 604 (321) | 1.26 | 599 (319) | 1.25 || 5501 (18) | 11.67 | 2796 (9) | 5.84 || 2867 (18) | 5.99 | 2796 (9) | 584
Outdoor 2 30 4321 4380 (4269)| 1.01 | 4379 (4268)| 101 || 9301 (7893)| 2.17 | 4695 (4574)| 1.09 || 4772 (4031)| 1.10 | 4695 (3960)| 1.09
2 60 4321 4382 (4266)| 1.01 | 4381 (4265)| 1.01 || 9556 (7728)| 2.21 | 4778 (4627)| 1.11 || 4854 (3957)| 1.12 | 4778 (3890)| 1.11
2 none 4321 4377 (4269)| 1.01 | 4376 (4268)| 1.01 || 9683 (7601)| 2.24 | 4842 (4525)| 1.12 || 4923 (3903)| 1.14 | 4842 (3931)| 1.12
8 30 1079 1263 (789) | 117 | 1260 (788) | 1.17 || 6985 (36) | 6.47 | 3500 (18) | 3.24 || 3561 (26) | 3.30 | 3494 (18) | 3.24
8 60 1079 1278 (790) | 1.18 | 1274 (789) | 1.8 || 6314 (113) | 5.85 | 3158 (59) | 2.93 || 3229 (70) | 299 | 3157 (58) | 2.93
8 none 1079 1247 (873) | 1.16 | 1243 (871) | 1.15 || 6032 (151) | 559 | 3016 (76) | 2.80 || 3099 (94) | 2.87 | 3016 (76) | 2.80
14 30 616 764 (450) | 1.24 | 760 (451) | 123 || 6759 (6) | 10.97 | 3392 (3) | 551 || 3452 (6) | 5.60 | 3380 (3) | 5.49
14 60 616 750 (482) | 1.22 | 745 (481) | 121 || 6311 (27) | 10.25 | 3156 (13) | 5.12 || 3228 (20) | 5.24 | 3156 (13) | 5.12
14 none 616 746 (464) | 1.21 | 741 (463) | 120 || 5497 (52) | 892 | 2748 (26) | 4.46 || 2819 (37) | 4.58 | 2748 (26) | 4.46
20 30 431 572 (280) | 1.33 | 567 (281) | 132 || 6723 (3) | 1560 | 3362 (2) | 7.80 || 3437 (3) | 7.97 | 3362 (2) | 7.80
20 60 431 557 (285) | 1.29 | 552 (285) | 128 || 6131 (10) | 14.23 | 3066 (5) | 7.1 || 3140 (9) | 7.29 | 3065 (5) | 7.11
20 none 431 551 (296) | 1.28 | 547 (294) | 127 || 5348 (23) | 12.40 | 2674 (12) | 6.20 || 2740 (18) | 6.36 | 2674 (12) | 6.20
Indoor 2 30 2090 4172 (4017)| 1.02 | 4171 (4015)| 1.02 || 8937 (7422)| 2.19 | 4468 (4230)| 1.09 || 4539 (3797)| 1.11 | 4468 (3729)| 1.09
2 60 4090 4196 (3995)| 1.03 | 4194 (3994)| 1.03 || 9243 (7116)| 2.26 | 4621 (4290)| 1.13 || 4690 (3648)| 1.15 | 4621 (3585)| 1.13
2 none 4090 4172 (4015)| 1.02 | 4171 (4014)| 1.02 || 9326 (7033)| 2.28 | 4663 (4166)| 1.14 || 4739 (3615)| 1.16 | 4663 (3549)| 1.14
8 30 1022 1232 (849) | 121 | 1225 (849) | 1.20 || 6501 (24) | 6.36 | 3262 (12) | 3.19 || 3319 (17) | 325 | 3253 (12) | 3.8
8 60 1022 1209 (846) | 1.18 | 1202 (846) | 1.18 || 6081 (86) | 5.95 | 3042 (44) | 2.98 || 3114 (55) | 3.05 | 3041 (43) | 2.98
8 none 1022 1209 (842) | 1.18 | 1199 (839) | 1.17 || 5815 (180) | 5.69 | 2905 (90) | 2.84 || 2981 (108) | 2.92 | 2007 (90) | 2.84
14 30 584 775 (438) | 1.33 | 768 (439) | 1.32 || 6348 (4) | 10.86 | 3192 (2) | 547 || 3254 (4) | 557 | 3190 (2) | 546
14 60 584 748 (452) | 1.28 | 741 (452) | 127 || 5995 (22) | 10.27 | 2999 (11) | 5.4 || 3071 (16) | 5.26 | 2998 (11) | 513
14 none 584 732 (448) | 1.25 | 725 (445) | 124 || 5033 (46) | 862 | 2517 (23) | 4.31 || 2504 (31) | 4.44 | 2517 (23) | 431
20 30 408 617 (241) | 151 | 608 (242) | 1.49 || 6370 (3) | 1561 | 3188 (1) | 781 || 3248 (3) | 7.96 | 3186 (1) | 7.81
20 60 408 570 (270) | 1.40 | 566 (271) | 1.39 || 5732 (10) | 14.05 | 2866 (5) | 7.02 || 2939 (8) | 7.20 | 2866 (5) | 7.02
20 none 408 547 (279) | 1.34 | 540 (277) | 132 || 4696 (22) | 1151 | 2348 (11) | 5.75 || 2420 (17) | 5.93 | 2348 (11) | 575

Fig. 10. Experimental Results for MFC and MSTC in Unweightedrdin (“Max” = Cover Time or Cover and Return Time)

optimized MSTC are similar to the ones of non-optimizedery small. For examplep = 8.9 x 10~* for empty terrain,
MSTC but its cover and return times are significantly smallep = 9.9 x 10~* for outdoor terrain ang = 10.5 x 10~* for
Consequently, the ratios are reduced by a factor of two amaloor terrain. Empirically, however, the ratios are sigaintly
then no longer differs significantly from the ratios for “@V smaller (at most 1.77) in all tested scenarios.

However, even without such optimizations, MFC continues

to have much smaller cover times than optimized MSTC,

for both team objectives in all scenarios. MFC has much

smaller cover (and return) times than MSTC for more than two IX. CONCLUSIONS

robots and comparable cover (and return) times than opguniz

MSTC for two robots because MFC takes the team objective|n this article, we introduced a new multi-robot coverage
already into account when finding a tree for each robelgorithm, called Multi-Robot Forest Coverage (MFC). We
to circumnavigate, whereas MSTC takes the team objecti¥gtended MFC and an alternative existing multi-robot cov-
only into account when it decides how the robots shoulstage algorithm, called Multi-Robot Spanning Tree Coverag
circumnavigate the single tree. Consequently, MSTC doés IMISTC), from unweighted terrain to weighted terrain. Our
balance the travel times of the robots as well, as evidencggberimental results showed that the cover time of MFC is
by a large difference between the minimal and largest travghaller than the one of Multi-Robot Spanning-Tree Coverage
times of the robots. Theorem 5 guarantees that the cover (§MSTC) and close to minimal in all tested scenarios. Culyent
return) times of MFC in unweighted terrain are at most RIFC assumes ideal robots. It is future work to generalize it t
factor of eight larger than minimal but empirically the c&i robots with actuator and sensor uncertainty and other &ypic
are significantly smaller (at most 1.51) in all tested sc@sar imperfections, which includes making it robust in the prese
Similarly, Theorem 7 guarantees that the cover (and retuigy) failing robots. It is also future work to combine the ideas
times of MFC in weighted terrain are at most a factor of abodehind MSTC and MFC, especially if several robots start in
sixteen larger than minimal since the values¢oéire indeed nearby small cells.
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Terrain Robots | Clustering Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”
Max  (Min) | Ratio | Max (Min) | Ratio Max  (Min) | Ratio | Max (Min) | Ratio Max  (Min) | Ratio | Max (Min) | Ratio
Empty H 30 25004 27369 (43018)| 1.07 | 47353 (10612)] 1.07 || 96660 (83672)] 2.10 | 48340 (46595)| 1.10 || 48865 (42446)| 1.11 | 48334 (41325)] 1.10
2 60 45094 47840 (42516)| 1.09 | 47825 (10621)| 1.08 100558 (79782)| 2.27 50284 (48821)| 1.14 50940 (40688) 1.15 | 50279 (40101)| 1.14
2 none 45094 48061 (42334)| 1.09 | 48028 (10613)| 1.09 104811 (75532)| 2.37 52409 (48862) 1.19 53082 (38625)| 1.20 | 52406 (38078)| 1.19
8 30 11273 12698 (9676) 1.15 12645 (9208) 1.14 73870  (411) 6.67 36967 (206) 3.34 37506  (261) 3.38 36938 (207) 3.33
8 60 11273 12765 (10058)| 1.16 12749 (9549) 1.15 72479  (1106) 5.54 36240 (559) 227 36883 (668) 3.33 36240 (559) 227
8 none 11273 13726 (8983) 1.24 13699 (8729) 1.24 54885 (2519) 4.94 27453 (1259) 247 28026 (1511) 252 27445 (1260) 2.47
14 30 6442 7620 (5396) | 1.21 | 7586 (5359) | 1.20 || 72107 (37) | 11.41| 36054 (19) | 571 || 36639 (37) | 5.80 | 36054 (19) | 5.71
14 60 6442 7620 (5208) | 121 | 7581 (5166) | 1.20 || 69594 (177) | 11.01 | 34797 (89) | 551 || 35441 (149) | 5.61 | 34797 (89) | 551
14 none 6442 8004 (4768) | 1.27 7977 (4719) | 1.26 43131 (616) 6.71 21566 (308) 3.35 22099 (438) 3.44 | 21566 (308) 3.35
20 30 4509 5575 (3487) | 1.26 5505 (3466) | 1.24 70424 (19) 15.93 | 35214 9) 7.97 35810 (19) 8.10 | 35214 9) 7.97
20 60 4509 5460 (3666) | 1.23 | 5428 (3628) | 1.23 || 67842 (93) | 15.39 | 33922 (48) | 7.69 || 34553 (93) | 7.84 | 33921 (48) | 7.69
20 none 4509 5736 (3093) | 1.29 | 5704 (3054) | 1.28 || 33042 (280) | 7.50 | 16521 (140) | 3.75 || 17028 (254) | 3.87 | 16251 (140) | 3.75
Outdoor 2 30 40586 43430 (37877)| 1.09 43418 (10612)| 1.09 86654 (75655)| 2.18 43330 (42868)| 1.09 43927 (38497)| 1.10 43327 (37933)| 1.09
2 60 40586 43677 (37652)| 1.10 | 43664 (10600)| 1.10 || 91671 (70637)| 2.29 | 45841 (42694)| 1.15 || 46410 (36050)| 1.16 | 45836 (35512)| 1.15
2 none 40586 43910 (37472)| 1.10 | 43884 (10652)| 1.10 || 94781 (67529)| 2.38 | 47396 (42937)| 1.19 || 48083 (34655)| 1.21 | 47390 (34071)| 1.19
8 30 10146 11679 (8657) | 1.17 | 11622 (8484) | 1.17 66563  (303) 6.72 33287 (153) 3.36 33847  (209) 3.42 | 33283 (153) 3.36
8 60 10146 11677 (8526) | 1.17 | 11633 (8436) | 1.17 58422 (1131) | 5.88 29270 (573) 2.94 29834  (691) 299 | 29223 (570) 2.94
8 none 10146 12124 (8248) | 1.22 | 12078 (8164) | 1.21 54687 (1988) | 5.47 27355 (1004) | 2.74 27999 (1229) | 2.80 | 27347 (1000) | 2.74
14 30 5798 6919 (4876) | 1.22 | 6838 (4835) | 1.20 || 63965 (41) | 11.29 | 31983 (21) | 565 || 32580 (40) | 575 | 31983 (21) | 5.65
14 60 5798 6803 (4877) | 1.20 6752 (4842) | 1.19 56196  (245) 9.92 28098 (123) 4.96 28645 (198) 5.06 | 28098 (124) 4.96
14 none 5798 7253 (4446) | 128 | 7208 (4386) | 1.27 || 43183 (671) | 7.53 | 21592 (335) | 3.77 || 22177 (453) | 3.87 | 21592 (335) | 3.77
20 30 4059 5240 (2945) | 1.32 | 5170 (2918) | 1.30 63018 (26) | 18.95 | 31509 (13) | 7.97 || 32056 (26) | 8.11 | 31509 (13) | 7.97
20 60 4059 5041 (3341) | 1.27 | 4995 (3275) | 1.25 56366 (97) | 14.22 | 28183 (48) | 7.1 || 28743 (82) | 7.25 | 28183 (48) | 7.11
20 none 4059 5203 (2811) | 1.31 | 5179 (2778) | 1.30 34814 (285) | 8.68 | 17407 (142) | 4.34 || 17998 (214) | 4.49 | 17407 (142) | 4.34
Indoor 2 30 38212 41237 (35599)[ 1.10 | 41225 (10612) 1.10 81616 (71193) 2.18 | 40815 (39557)| 1.09 41609 (36585)[ 1.11 | 40808 (35898) 1.09
2 60 38212 41091 (35923)| 1.10 | 41028 (10612) 1.10 85686 (67123)| 2.28 | 42849 (41000)| 1.14 43726 (34840)| 1.17 | 42843 (33955) 1.14
2 none 38212 40784 (36339)| 1.09 | 40678 (10625)| 1.09 88988 (63823)| 2.38 | 44500 (39984)| 1.19 45528 (33535)| 1.22 | 44494 (32470)| 1.19
8 30 9553 11703 (8323) | 1.25 | 11556 (8197) | 1.23 60767  (195) 6.50 30421 (103) 3.26 31336 (140) 3.35 | 30390 (101) 3.25
8 60 9553 11522 (8464) | 1.23 | 11440 (8346) | 1.22 55229 (815) | 5.85 | 27620 (408) | 2.93 || 28670 (502) | 3.04 | 27616 (408) | 2.93
8 none 9533 11602 (8049) | 1.24 | 11516 (7903) | 1.23 49818 (1925) | 5.31 | 24909 (962) | 2.66 || 25926 (1114) | 2.77 | 24909 (962) | 2.66
14 30 5459 7815 (4044) | 1.46 | 7686 (3988) | 1.43 58513  (35) | 10.93 | 29256 (17) 5.46 || 30242 (33) 5.65 | 29256 (17) 5.46
14 60 5459 7353 (4024) | 1.37 | 7227 (3983) | 1.35 || 52785 (219) | 9.85 | 26393 (111) | 4.93 || 27358 (156) | 5.11 | 26392 (111) | 4.93
14 none 5459 6937 (4128) | 1.30 | 6871 (4047) | 1.28 || 37708 (646) | 7.04 | 18854 (323) | 352 || 19782 (410) | 3.70 | 18854 (323) | 3.52
20 30 3821 6669 (1175) | 1.77 6536 (1146) | 1.74 56833 (20) 15.14 | 28446 (10) 7.57 29434 (19) 7.84 | 28421 (10) 7.57
20 60 3821 5936 (1824) | 1.57 5824 (1791) | 1.55 50182 (88) 13.50 | 25091 (44) 6.75 25985  (74) 6.99 | 25091 (44) 6.75
20 none 3821 5198 (2288) | 1.39 | 5133 (2238) | 1.37 || 32374 (382) | 8.63 | 16187 (191) | 4.32 || 17040 (264) | 455 | 16187 (191) | 4.32

Fig. 11. Experimental Results for MFC and MSTC in Weightedrdier (‘Max” = Cover Time or Cover and Return Time)
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