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Abstract

We study the problem of choosing the “best” subset of
k sensors to sample from among a sensor deployment of
n > k sensors, in order to predict aggregate functions over
all the sensor values. The sensor data being measured are
assumed to be spatially correlated, in the sense that the val-
ues at two sensors can differ by at most a monotonically
increasing, concave function of their distance. The goal is
then to select a subset of sensors so as to minimize the pre-
diction error, assuming that the actual values at unsampled
sensors are worst-case subject to the constraints imposed
by their distances from sampled sensors.

Even selecting sensors for the optimal prediction of the
mean, maximum or minimum is NP-hard; we present ap-
proximation algorithms to select near-optimal subsets ofk
sensors that minimize the worst-case prediction error. In
general, we show that for any aggregate function satisfying
certain concavity, symmetry and monotonicity conditions,
the sensor selection problem can be modeled as ak-median
clustering problem, and solved using efficient approxima-
tion algorithms designed fork-median clustering.

Our theoretical results are complemented by experiments
on two real-world sensor data sets; our experiments confirm
that our algorithms lead to prediction errors that are usu-
ally less than the (normalized) standard deviation of the test
data, using only around 10% of the sensors.

1 Introduction

Sensor networks are becoming increasingly popular for
instrumenting and observing natural and industrial envi-
ronments. A major objective for such deployments is to
monitor statistical information about the phenomenon be-
ing sensed over potentially large areas. For instance, tem-
perature sensors might monitor the maximum temperature
in a chemical reaction; chlorophyll sensors might estimate
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the average chlorophyll level for algae predictions in a ma-
rine biology setting; seismic sensors might monitor the min-
imum vibration level at a possibly dangerous frequency for
a building.

Due to the severe energy constraints inherent to sen-
sor networks, it is desirable to minimize the amount of
sensed data needed to estimate such aggregate functions,
and thereby reduce the power needed for sensors to make
data measurements and transmit them through the network.
The problem then is to decide which sensors’ data are
most valuable to estimate the aggregate function accurately.
There is clearly a tradeoff between the amount of sensor
data needed, which translates into increased energy expen-
diture in the sensor network, and the accuracy of estimation
of the aggregate function.

Suppose that the sensor network hasn sensors, but due
to energy constraints, we are allowed to sample only up to
k < n of them, to estimate a particular aggregate function
of interest. We then need to choose the “best”k sensors to
help us predict the aggregate function with minimum error.

In order to reduce the number of measurements, one ex-
ploits thespatial correlationof sensors, i.e., the fact that
sensors “near each other” tend to have “similar values”.1

Generally, it is believed that a good sensor set to sample
should be “spread out”, i.e., cover the entire area well.

In this paper, we formalize the underlying sensor selec-
tion problem, and provide precise characterizations of the
objectives quantifying “spread out” for several aggregate
functions. We assume that then sensor nodes are embedded
in some known metric space.2 The distanced(i, j) between
two nodesi, j in this metric gives a hard upper bound on
the difference between the sensor readings ati andj. That
is, any two sensors are spatially correlated in the sense that
their values can differ by at most their distance (or a metric-
preserving function of their distance) from each other. The
goal then is to devise algorithms that choose a setS of size

1Indeed, spatial correlation is the reason that any discretedeployment,
however dense, can give an accurate estimate of an aggregate function over
what is intrinsically a continuous domain.

2This space may be significantly different from the actual 2- or3-
dimensional Euclidean space; for instance, walls could cause physically
proximate nodes to measure very different phenomena.



k to sample, and output an estimate of the aggregate func-
tion value, so as to minimize the worst-case estimation error
for the function, over all sensor values (both observed and
unobserved) satisfying all the distance constraints. (Forpre-
cise definitions, see Section 2.)

Remark 1.1 This sensor selection problem can also be al-
ternatively viewed as a sensor placement problem, where
there aren potential sensor locations covering an area of
interest, but onlyk sensors, which can be placed at any of
these locations. The goal is to choose a set ofk locations
to place the sensors, in order to best estimate a particular
aggregate function that needs to be measured over all the
locations. The resulting optimization problem is of course
the same as before, and we will continue to use the termi-
nology of sensor selection here.

Remark 1.2 It might appear that even the existence of a
metric providing such a hard bound on the sensor values
cannot be guaranteed. While the metric may not coincide
with a low-dimensional Euclidean one, we show in Sec-
tion 4.1 how to construct such a metric based on observed
data, essentially defining the distance between two sensors
to be the maximum observed difference in measurements.
While this metric may appear to assign unnecessarily large
distances, it turns out to yield surprisingly accurate results.

Our main technical contribution is a characterization of
the worst-case sensor values for the average, maximum and
minimum functions, as well as for aggregate functions with
certain symmetry and concavity conditions (Section 3). In
particular, we obtain the following two results:

1. If the function to be estimated is the average, and up to
k sensors can be measured, the optimum solutionS is
the optimum solution for thek-median problem with
metricd. That is, it is optimal to minimize

∑
i d(i, S),

whered(i, S) = minj∈S d(i, j).

2. If the goal is to estimate the minimum or maximum
using up tok sensors, the optimum solutionS is the
optimum solution for thek-center problem with metric
d. That is, it minimizesmaxi d(i, S).

Since both of these classic problems have good (and prac-
tical) approximation algorithms, the corresponding sensor
set selection problems can be approximated efficiently.

In general, we show that for any aggregate function with
certain symmetry, monotonicity and concavity properties,
the optimum solutionS can be computed as a solution to a
k-median problem.

We note here that we only exploit spatial correlations in
the data, but no temporal correlations. The latter is an inter-
esting direction for future extensions.

In Section 4, we evaluate the performance of our algo-
rithms on two real-world sensor data sets, collected from

a 54-node network at Intel Labs Berkeley [1], and a 23-
node network at the SensorScope Grand St. Bernard De-
ployment [2]. We use one portion of the data sets to learn an
appropriate distance metric, and then observe the accuracy
of prediction of the aggregate function on another portion of
the data sets. The results show that our algorithms lead to
very good accuracy for predicting both the maximum and
the average values over the entire network, using a much
smaller subset of sensors. The subsets chosen by our al-
gorithms exhibit errors that are usually five times less than
the (normalized) standard deviation in the data, using only
around 10% of the sensors.

In the process, we also observe that the metrics inferred
from the measurements deviate significantly from the Eu-
clidean metric. While this is hardly surprising (various
man-made and natural phenomena affect correlations inde-
pendently of distance), it stresses the fact that correlations
between sensor values should be learned from past mea-
surements rather than just identified with physical distance.

1.1 Related Work

Finding “good” sets of sensor nodes to sample is one of
the central problems faced by designers and users of sen-
sor networks. The general problem has been phrased in an
optimization framework based on utility functions by Byers
and Nasser [8] and Bian et al. [7].

The most common approach to formalize the problem is
to treat the sensor readings asrandom variablesfor which
statistics such as mean, variance, and covariance are known.
Such statistical models can then be used to estimate unob-
served sensors’ values from other correlated sensor read-
ings. For example, using joint Gaussian models, Deshpande
et al. [12] show that the number of sensors to sample can be
decreased significantly. Under similar assumptions, Anstre-
icher et al. [4] and Ko et al. [21] formalize the information
gained from a sensor setS as the joint and conditional en-
tropies ofS, and consider the corresponding optimization
problems of maximum entropy sampling and maximum en-
tropy remote sampling, respectively. Similarly, Guestrinet
al. [14] considered the related sensor placement problem us-
ing a mutual information objective.

Staying within the framework of random variables, an
alternative is to minimize the expected (squared) predic-
tion error, using linear regression [20]. The problem is
then equivalent to the well-known problem of subset selec-
tion for regression [24, 11] and to sparse approximation of
signals over dictionaries [26]. Regression assumes knowl-
edge of the variables’ covariance matrix, which can be ap-
proximated using the empirically observed covariance. An
essentially equivalent approach was recently proposed by
Liaskovitis and Schurgers [22].

Our work differs from all these approaches in that we do



not focus on stochastic dependencies between variables, but
rather on the case of adversarially chosen values subject to
hard constraints. Our goal is thus to minimize the worst-
case prediction error, instead of the expected error.

The idea that good sensor sets to sample should pro-
vide some notion of “coverage” of an area is ubiquitous
in the community, and many different variants have been
suggested to formalize the notion of coverage (see, e.g.,
[3, 23]).

Correlations among sensor values have been exploited to
reduce energy consumption in various ways. One approach,
orthogonal to ours, is to compress data while forwarding
them [25]. Several other papers exploit correlations to re-
duce the number of transmissions, while explicitly consid-
ering the network structure used for forwarding data (e.g.,
[15, 29]). Yet another paradigm that takes advantage of
correlated sensor information is Distributed Source Coding,
where all sensors are assumed to have perfect information
about all correlations in the network, and can individually
compress their data before transmission [28].

The idea of sampling sensors to evaluate an aggregate
function has also been suggested by Bash et al. [6] and
Ganeriwal et al. [13]. Their focus, however, lies more on
the question of how to generate a uniformly random sensor
in a decentralized way, and on how to interpolate data based
on those samples.

2 Preliminaries and Notation

We first define some notation. Bold-face lettersx always
denote vectors, whose entries arexi. We writexi7→v to de-
note the vector whose entries agree withx, except theith

entry, which isv instead. Whenever we writex ≤ x′ for
vectorsx andx′, we mean that the inequality holds forall
coordinates. We will explicitly allow vectors with some un-
defined entries⊥.

We formally define our framework for optimizing the
sensor selection. Then sensors3 {1, . . . , n} are assumed to
be embedded in some metric space. We used(i, j) to denote
thedistancebetween sensorsi andj. These distances sat-
isfy the usual metric constraints, i.e., symmetry (d(i, j) =
d(j, i)), non-negativity (d(i, j) ≥ 0), and the triangle in-
equality (d(i, j) + d(j, k) ≥ d(i, k) for all i, j, k). Extend-
ing the notation to sets, we writed(i, S) := minj∈S d(i, j)
for the distance of locationi from setS.

The sensor reading at sensori is denoted byxi, and the
vector of all sensor readings byx. The distances impose
hard constraints on how much the readings of two sensors
i andj can differ. We define avalid assignmentof sensor
readingsx to be one in which|xi − xj | ≤ d(i, j) for all

3In principle, our approach can be extended to deal with an infinite
metric space, e.g., a continuous space into which sensors mustbe placed.
The necessary modifications are fairly straightforward.

pairsi, j. Validity of assignments is precisely the sense in
which we quantify the informal notion that “nearby nodes
have nearby values.” We use the assignmentxi =⊥ to ex-
press that the reading at sensori is unknown. Avalid S-
assignmentis then a valid assignment for whichxi 6=⊥ for
all i ∈ S. (Thus, a valid assignment is a valid{1, . . . , n}-
assignment.) In particular, we will frequently refer to the
S-assignment vector with itsith component equal to0 if
i ∈ S, and equal to⊥ for i /∈ S, and denote it by0(S).

Remark 2.1 We stress here that the metric space need not,
and usually will not, coincide with the 3-dimensional Eu-
clidean space in which the sensors are actually placed.
For instance, building walls may result in two sensors with
small Euclidean distance measuring distinct phenomena;
conversely, two distant rooms could be on the same air-
conditioning control, and temperature readings in those two
rooms would be very close to each other. Thus, in general,
the metric should be inferred from past measurements or do-
main knowledge, rather than identified with Euclidean dis-
tance (we discuss this point in more depth in Section 4.1).

Remark 2.2 The constraint that readings differ by at most
the distance may seem overly restrictive, and it may seem
desirable to add a functionφ : R

+ → R
+ to the problem

specification, requiring that|xi − xj | ≤ φ(d(i, j)). How-
ever, so long asφ is monotone non-decreasing, concave,
and satisfiesφ(0) = 0, replacing each distanced(i, j) with
d′(i, j) := φ(d(i, j)) can be easily seen to give rise to a new
metric space in which now|xi − xj | ≤ d′(i, j). Thus, the
addition of a “correlation decay function” of the distance
does not add expressive power to the model.

The purpose of the sensor network is to estimate some
aggregate functionf(x). Standard examples include the
averagef(x) := 1

n

∑
i xi, or the maximumor minimum

f(x) := maxi xi or f(x) := mini xi.
Due to energy constraints, the algorithm is only allowed

to sample up tok of the sensor readingsxi. Thus, an al-
gorithm will first compute, in polynomial time, a setS ⊆
{1, . . . , n} of k sensors to sample. By retrieving their val-
ues, the algorithm will learn a validS-assignment vector
x(S), wherex

(S)
i =⊥ (undefined) fori /∈ S, andx

(S)
i = xi

for i ∈ S. To this S-assignment, the algorithm will then
apply a prediction functioñf (possibly different fromf ) to
compute its output̃f(x(S)). The goal of the algorithm is to
minimize itsprediction error|f̃(x(S))−f(x)|. We call this
problemprediction error minimization.

In this paper, we study this problem from a worst-case
perspective. That is, we want to design algorithms which
will minimize the prediction error under the assumption of a
worst case valid assignment. Formally, the goal is to choose
f̃ andS so as to minimizemaxxvalid |f̃(x(S)) − f(x)|.



In this setting, it is convenient (and common) to think
of the valuesx as being chosen by anadversarywith full
knowledge of the algorithm. So long as the algorithm is
deterministic (we briefly discuss the very interesting case
of randomized algorithms in Section 5), the adversary can
predict at the outset which setS the algorithm will choose,
and hence we can think of the process as follows: First, the
algorithm chooses a setS. Then, the adversary (knowing
the prediction functionf̃ used by the algorithm) reveals a
valid S-assignmentx to the sensors inS. Using this assign-
ment, the algorithm now computes and outputsf̃(x), after
which the adversary chooses and reveals the valid assign-
mentx′ that includes the values for the remaining sensors
(in S).

The values the adversary chooses in the final step must
also be valid. We say thatx′ is a valid S-extensionof the
S-assignmentx if x′ is a valid assignment, andx′

i = xi

for all i ∈ S. Given a setS and validS-assignmentx,
we are interested in the worst prediction error the adversary
can cause against the optimal prediction functionf̃ . For-
mally, we defineE(S,x) := maxx′ |f̃(x) − f(x′)|, where
x′ ranges over all validS-extensions ofx. The worst-case
error for a sample setS is thenE(S) := maxx E(S,x),
wherex ranges over all validS-assignments.

In our analysis, we will frequently want to reason about
the largest or smallest possible values that the adversary
could choose for sensors outsideS. We therefore define
two specificS-extensionsx+ andx− as follows: For alli,
x+

i := minj(xj + d(i, j)), andx−

i := maxj(xj − d(i, j)).
(Notice that fori ∈ S and validx, the definition implies
x+

i = x−

i = xi.) Using triangle inequality, it is then easy to
verify the following:

Proposition 2.3 x+ andx− are validS-extensions ofx.

We will see below that given a choice of a setS and a
valid S-assignmentx to S, the optimum prediction function
f̃ can be computed in polynomial time. Thus, the crux of
the problem is to choose the setS so as to minimizeE(S).

Our algorithms for sensor selection will be based on
known algorithms for the metrick-median and metrick-
center problems. We formally define those problems here.

Definition 2.4 (k-median) Given a distance metricd and
a numberk, select a setS of k nodes so as to minimize∑

i d(i, S).

Definition 2.5 (k-center) Given a distance metricd and
a numberk, select a setS of k nodes so as to minimize
maxi d(i, S).

3 Characterizing Optimal Algorithms

In this section, we analyze the problem from the adver-
sary’s perspective, and show that both for the average and

minimum/maximum objectives, the adversary’s strategy is
to reveal identical readings at all locations inS. This ob-
servation in turn can be used to rephrase the algorithm’s se-
lection as clustering objectives (metrick-median and metric
k-center, respectively), for which good approximation algo-
rithms are known.

Subsequently, we generalize the insights from the argu-
ment for the average objective, and describe sufficient con-
ditions for an aggregate function under which the adversary
will reveal identical readings at all sensors.

3.1 Predicting the Average

We first consider the case whenf(x) = 1
n

∑
i xi.

Theorem 3.1 For any setS, the adversary’s best strategy
is to reveal identical readings of 0 at alli ∈ S. That is,
E(S) = E(S,0(S)).

The worst case error is exactlyE(S) = 1
n ·

∑
i/∈S d(i, S).

Proof. Let x be any validS-assignment. For anyi /∈ S
andj ∈ S, the distance constraint on sensor values implies
xj − d(i, j) ≤ x′

i ≤ xj + d(i, j) for all valid S-extensions
x′ of x, i.e.,x− ≤ x′ ≤ x+ for all valid S-extensionsx′ of
x.

Since an adversary having revealedx on S can always
choose either to extend it tox− or tox+ after the algorithm
has outputf̃(x), the optimum algorithm must be the one
outputting1

2 (f(x+)+ f(x−)) = 1
n ·

∑
i

1
2 (x+

i +x−

i ). Oth-
erwise, the adversary could choose the one amongx+ and
x− farther away fromf̃(x) and guarantee a worse predic-
tion error. Notice that bothx+ andx− can be computed by
an algorithm in timeO(kn) onceS andx are known.

When the algorithm makes this optimal choice, the pre-
diction error will be exactly

f(x+) − 1
2 (f(x+) + f(x−)) = 1

2 (f(x+) − f(x−))
= 1

n ·
∑

i
1
2 (x+

i − x−

i ).

By definition ofx+ andx−, we get that

x+
i − x−

i = minj∈S(xj + d(i, j))
−maxj∈S(xj − d(i, j))

≤ (xj + d(i, j)) − (xj − d(i, j))
= 2d(i, j),

for all j ∈ S. In particular,x+
i − x−

i ≤ 2d(i, S), and
the maximum error the adversary can achieve is therefore
E(S,x) ≤ 1

n ·
∑

i d(i, S).
On the other hand, if the given assignment is0(S), then

x+
i = d(i, S) andx−

i = −d(i, S), giving a matching error
of 1

n ·
∑

i d(i, S) against the best algorithm. Thus, choosing
0(S) achieves the upper bound, and must be optimal.



The proof explicitly gives us the optimum prediction
function f̃ for the algorithm as a corollary:

Corollary 3.2 Given a choiceS of a sensor set and anS-
assignmentx that has been revealed, the optimum predic-
tion function isf̃(x) := 1

2 (f(x+) + f(x−)). f̃ can be
computed in timeO(kn).

By Theorem 3.1, the optimum setS the algorithm should
choose to sample is exactly the one minimizing

∑
i d(i, S).

But this is precisely the objective function of the well-
known k-median problem. Since thed(i, j) are assumed
to be a metric, the problem of selecting the optimum set
S to sample is equivalent to the metrick-median problem,
giving us the following corollary.

Corollary 3.3 1. For everyε > 0, there is a polynomial-
time(3 + ε)-approximation algorithm for the problem
of choosing thek-element setS minimizingE(S).

2. UnlessNP ⊆ DTIME[nO(log log n)], there is no
polynomial-time algorithm approximating the best set
selection to within1 + 2/e (wheree is the basis of the
natural logarithm).

The corollary follows directly from the corresponding
results of Arya et al. [5] and Jain et al. [18] for the metrick-
median problem. Since we use it in our experimental eval-
uation, we will describe the local search based algorithm of
Arya et al. in more detail in Section 3.4.1.

3.2 Predicting the Maximum or Minimum

We now consider the case whenf(x) = maxi xi. (The
case of the minimum is analogous.) Similar to the case of
the average, we first show that for any given subsetS of
sensors, the adversary achieves worst-case errorE(S) by
showing the vector0(S).

Theorem 3.4 For any setS, E(S) = E(S,0(S)). That is,
the adversary can maximize the prediction error by showing
value 0 at all sampled locations.

The worst-case error is exactlyE(S) = 1
2 maxi d(i, S).

Proof. Let x be any validS-assignment. By the same
reasoning as before, the optimum algorithm must out-
put 1

2 (f(x+) + f(x−)), which in the case of predicting
the maximum equals12 ((maxi minj∈S(xj + d(i, j))) +
maxi maxj∈S(xj − d(i, j))). The first term can be upper
bounded bymaxi(d(i, S) + maxj∈S xj) = maxi d(i, S) +
maxj∈S xj , and the second term always attains its maxi-
mum for somei ∈ S, so it equalsmaxj∈S xj . Thus, the
worst-case prediction error is

f(x+) − 1
2 (f(x+) + f(x−)) ≤ 1

2 maxi d(i, S).

On the other hand, if the adversary choosesx = 0(S),
the error is exactlyE(S,0(S)) = 1

2 maxi d(i, S). Thus, it
is optimal for the adversary to show0(S).

Again, a corollary of the proof of Theorem 3.4 provides
an optimal prediction function for the algorithm to use.

Corollary 3.5 Given a choiceS of a sensor set and an
S-assignmentx that was revealed, the optimum predic-
tion function isf̃(x) := 1

2 ((maxi minj∈S(xj + d(i, j))) +

maxj∈S xj). f̃ can be computed in timeO(kn).

By Theorem 3.4, the algorithm should choose the setS
minimizing maxi/∈S d(i, S). This is the objective function
of the (metric)k-center problem. Thus, the problem of se-
lecting the optimum setS to sample is equivalent to the
metrick-center problem, giving us the following corollary.

Corollary 3.6 1. There is a 2-approximation algorithm
for the problem of choosing thek-element setS mini-
mizingE(S).

2. UnlessP = NP, there is no polynomial-time algo-
rithm approximating the best set selection to within
2 − ε, for anyε > 0.

The corollary follows from the results for metrick-
center due to Hochbaum and Shmoys [16] and Hsu and
Nemhauser [17]. The greedy 2-approximation algorithm
that we use is described in Section 3.4.2.

3.3 A general result

We now derive a more general condition under which the
adversary’s best strategy is to reveal the vector0(S).

Definition 3.7 (0-centered)We say that an aggregate func-
tion f is 0-centeredif it satisfies the following four condi-
tions:

1. f is monotonically non-decreasing in all its variables
and has well-defined first and second partial deriva-
tives.

2. The partial derivatives are symmetric around 0 in each
variable. In other words, for eachi and j, we have

∂
∂xi

f(x) = ∂
∂xi

f(xj 7→−xj
).

3. For all i, ∂2

∂x2
i

f(x) ≤ 0 wheneverxi > 0, and
∂2

∂x2
i

f(x) ≥ 0 wheneverxi < 0.

4. Partial derivatives are maximized near 0, in the sense
that ∂

∂xi
f(0i7→xi

) ≥ ∂
∂xi

f(x) for all i.



A sufficient condition for being 0-centered is iff is of
the formf(x) =

∑
i fi(xi), where eachfi : R → R is a

monotone function which is concave onR
+ and convex on

R
−. In particular, the condition thus applies to the sum and

average functions.
We first prove a lemma showing that the largest differ-

ences in a 0-centered function are achieved around 0.

Lemma 3.8 Letf be 0-centered. For any vectorsx, b with
xi ≥ 0 for all i, f(x) − f(−x) ≥ f(b + x) − f(b − x).

Proof. Definex(j) to be the vector withx(j)
i = −xi for

i ≤ j, andx
(j)
i = xi for i > j. Thus,x(0) = x, and

x(n) = −x, and we can write a telescoping series

f(x) − f(−x) =
∑n

i=1(f(x(i−1)) − f(x(i))).

We next show thatf(x(i−1))−f(x(i)) = f(z(i))−f(−z(i))
for all i, wherez(i) = 0i7→xi

is the vector with entries
z
(i)
j = 0 for j 6= i, andz

(i)
i = xi. For this purpose, fix ani,

and for eachj definey(i,j) as the vector withy(i,j)
r = −xr

for r ≤ min(i, j) or r = i, y
(i,j)
r = xr for i < r ≤ j,

and y
(i,j)
r = 0 for r > j, r 6= i. In addition, define

ŷ(i,j) := y
(i,j)
i7→xi

, i.e. ŷ(i,j) agrees withy(i,j), except for
the sign in coordinatei.

We claim thatf(ŷ(i,j−1)) − f(y(i,j−1)) = f(ŷ(i,j)) −
f(y(i,j)) for all j. We can equivalently rewrite this claim
asf(y(i,j)) − f(y(i,j−1)) = f(ŷ(i,j)) − f(ŷ(i,j−1)). For
j = i, this claim is trivial. For otherj, we will express the
differences as integrals of differentials, and apply condition
2. Specifically, by substituting the definitions, we rewrite

the left-hand side as
∫ y

(i,j)
j

0
∂

∂xj
f(y

(i,j)
j 7→t)dt. Similarly, the

right-hand side is
∫ ŷ

(i,j)
j

0
∂

∂xj
f(ŷ

(i,j)
j 7→t)dt. But by definition

of y(i,j) andŷ(i,j), the two only differ in the sign of theith

coordinate, so the second property in the definition of being
0-centered implies that∂∂xj

f(y
(i,j)
j 7→t) = ∂

∂xj
f(ŷ

(i,j)
j 7→t), and

the two integrals are equal, proving the claim.
By induction over j, we therefore also obtain that

f(ŷ(i,0)) − f(y(i,0)) = f(ŷ(i,n)) − f(y(i,n)). But notice
that ŷ(i,0) = z(i),y(i,0) = −z(i), and ŷ(i,n) = x(i−1)

and y(i,n) = x(i), proving thatf(x(i−1)) − f(x(i)) =
f(z(i)) − f(−z(i)). Thus, we obtain that

f(x) − f(−x) =
∑n

i=1(f(z(i)) − f(−z(i))).

Similarly, we can write

f(b + x) − f(b − x)
=

∑n
i=1(f(b + x(i−1)) − f(b + x(i))).

(1)

We will use conditions 3 and 4 of the definition of being
0-centered to upper bound each term of the telescoping sum

f(b+x(i−1))−f(b+x(i)) ≤ f(z(i))−f(−z(i)). The idea
is again to write a difference as an integral of differentials:

f(b + x(i−1)) − f(b + x(i))

=
∫ bi+xi

bi−xi

∂
∂xi

f((b + x(i))i7→t)dt
(4)

≤
∫ bi+xi

bi−xi

∂
∂xi

f(0i7→t)dt.

(2)

For simplicity, we writeh(t) := ∂
∂xi

f(0i7→t), as well as
ℓ := bi−xi andu := bi+xi. Condition 3 in the definition of
being 0-centered implies thath is monotone decreasing int
for t ≥ 0, and monotone increasing fort ≤ 0, and condition
2 implies thath(t) = h(−t) for all t. If ℓ ≥ 0, monotonicity
implies that

∫ u

ℓ
h(t)dt ≤

∫ u−ℓ

0
h(t)dt. Similarly for u ≤ 0.

Next, once we haveℓ ≤ 0 ≤ u, we assume w.l.o.g. that
u + ℓ > 0 (the caseu + ℓ < 0 is symmetric). Because
∫ u

(u−ℓ)/2
h(t)dt ≤

∫ (u−ℓ)/2

−ℓ
h(t)dt =

∫ ℓ

(ℓ−u)/2
h(t)dt by

monotonicity,

∫ u

ℓ
h(t)dt =

∫ (u−ℓ)/2

ℓ
h(t)dt +

∫ u

(u−ℓ)/2
h(t)dt

≤
∫ (u−ℓ)/2

(ℓ−u)/2
h(t)dt.

But (ℓ−u)/2 = −xi and(u− ℓ)/2 = xi, so we obtain that

∫ bi+xi

bi−xi

∂
∂xi

f(0i7→t)dt ≤
∫ xi

−xi

∂
∂xi

f(0i7→t)dt. (3)

Combining Equations (1), (2) and (3), we obtain that

f(b + x) − f(b − x) ≤
∑

i f(z(i)) − f(−z(i))
= f(x) − f(−x).

Using the above lemma, we can now prove that the
worst-case prediction error forf with setS sampled is max-
imized when the adversary reveals the vector0(S).

Theorem 3.9 If f is 0-centered, then for any subsetS of
sensors,E(S) = E(S,0(S)). That is, the adversary can
maximize the prediction error by showing the value 0 at all
sampled locations.

Furthermore, the worst-case error is then exactly
E(S) = 1

2 (f(∆) − f(−∆)), where∆ is the vector of dis-
tances fromS, i.e.,∆i = d(i, S).

Proof. Let x be any validS-assignment. By the mono-
tonicity off (condition 1), the maximum off is achieved by
x+, and the minimum byx− (both over validS-extensions).
Thus, the optimum algorithm outputs12 (f(x+) + f(x−)),
leading to a worst-case error of1

2 (f(x+) − f(x−)).
For eachi, let ji ∈ S be the closest sensor toi, so that

d(i, ji) = d(i, S). Then, the definitions ofx+ andx− im-
ply thatx+

i ≤ xji
+ d(i, S) andx−

i ≥ xji
− d(i, S). Writ-

ingb for the vectorbi = xji
for all i, the previous argument

then gives thatx+ ≤ b+∆ andx− ≥ b−∆. Monotonicity
of f implies thatf(x+)−f(x−) ≤ f(b+∆)−f(b−∆).



The latter, in turn, is at mostf(∆) − f(−∆) by Lemma
3.8, soE(S,x) ≤ 1

2 (f(∆) − f(−∆)) for all x, and thus
E(S) ≤ 1

2 (f(∆) − f(−∆)).
On the other hand, for the vector0(S), we obtain that

x+ = ∆ andx− = −∆, giving E(S,0(S)) = E(S).

As before, the proof also gives us the optimum prediction
function f̃ for the algorithm:

Corollary 3.10 Given a choiceS of a sensor set and an
S-assignmentx that was revealed, the optimum prediction
function is f̃(x) := 1

2 (f(x+) + f(x−)). Assuming that

f can be evaluated efficiently,̃f can be computed in time
O(kn).

Using the observation made in the proof of Lemma 3.8,
together with the error bound proved in Theorem 3.9, we
observe that the worst-case error incurred when sampling
set S is E(S) = 1

2

∑
i(f(0i7→d(i,S)) − f(0i7→−d(i,S))).

Writing gi(x) := f(0i7→x) − f(0i7→−x), the error is thus
of the formE(S) = 1

2

∑
i gi(d(i, S)), where eachgi is a

monotone increasing concave function withgi(0) = 0.
In general, it is not clear how well clustering prob-

lems with such objective functions can be approximated.
However, if we make the additional assumption that
f is symmetric in its arguments, i.e., thatf(x) =
f(xπ(1), . . . , xπ(n)) for every permutationπ of {1, . . . , n},
then all functionsgi are equal, soE(S) = 1

2

∑
i g(d(i, S)).

It can then be seen that by replacing the metric with
d′(i, j) := 1

2g(d(i, j)) (which is a metric by the proper-
ties ofg), we obtain the equivalent problem of choosingS
to minimize

∑
i d′(i, S). That is, for symmetric 0-centered

functionsf , the problem reduces tok-median again.

3.4 Approximation Algorithms

Here, we describe the approximation algorithms fork-
median andk-center used in our experiments. Both are
well-studied NP-hard optimization problems [27].

3.4.1 Thek-median algorithm

For the metrick-median problem, since the discovery of the
first constant-factor approximation by Charikar et al. [10]
(based on LP-rounding), a series of papers ([19, 9, 5],
among others) has led to improved approximation bounds
and more practical algorithms, using a variety of tech-
niques. On the other hand, Jain et al. [18] have shown an ap-
proximation hardness result of1 + 2/e for metrick-median
unlessNP ⊆ DTIME[nO(log log n)].

We use the approximation algorithm fork-median due to
Arya et al. [5]. It is based on a simple local search proce-
dure, and can be stated as follows.

The algorithm, with a parameterp, starts with an ar-
bitrary subsetS of k sensors, and keeps improving it by
swappingp sensors at a time, until the maximum possible
improvement is “small”. Specifically, for some polynomial
q(n) and a parameterε, the algorithm tries all setsS′ ⊂ S
of size|S′| ≤ p, as well as allT ⊆ S of size|T | = |S′|, and
updatesS to S ∪T \S′ if the objective function

∑
i d(i, S)

decreases by at least a factor1 − ε
q(n) . Arya et al. [5] show

that this algorithm gives a3+ 2
p + ε approximation, i.e., the

algorithm outputs a setS such that the total distance of all
nodes fromS is within a3 + 2

p + ε factor of the total dis-
tance from the best setS∗. We call this algorithm thelocal
search algorithm fork-median. In our implementation of
this algorithm, we chose the value of the parameterp = 2,
guaranteeing a4+ε approximation. (We noticed that in our
experiments, the performance withp = 1 was not signifi-
cantly different from the performance withp = 2.)

3.4.2 Thek-center algorithm

For k-center, Hochbaum and Shmoys [16] give a simple 2-
approximation algorithm based on parametric pruning and
greedy selection. The 2-approximation is also the best pos-
sible unlessP = NP [17].

We use a simple greedy algorithm with the same ap-
proximation guarantee, and based on similar ideas: Starting
from one arbitrary sensorS = {i}, the algorithm repeatedly
adds toS the locationj maximizingd(j, S), and terminates
once|S| = k.

Let j be a point farthest fromS, i.e., maximizingd(j, S),
and let δ = d(j, S). Then, by the choice of the algo-
rithm, S ∪ {j} is a set at pairwise distance at leastδ; hence,
any setS′ of at mostk points must have distance at least
δ/2 to at least one of them. Therefore, the algorithm is
a 2-approximation. (The analysis sketch is analogous to
the parametric pruning analysis of Hochbaum and Shmoys
[16].) We refer to this algorithm as thegreedy algorithm for
k-center.

4 Experimental Results

We validate our methods on two real-world data sets.
The first data set consists of a 54-node indoor sensor de-
ployment at Intel Labs Berkeley [1]. The measurements
were collected over a one-month period in March 2004.
They comprised light, temperature, and humidity measure-
ments, measured at each of the sensors every few seconds.

The second data set consists of measurements from 23
sensors from the SensorScope Deployment [2], deployed
outdoors at the Grand St. Bernard Pass. These measure-
ments were collected over a one-week period in October
2007, and comprise temperature, humidity, wind speed, ra-
diation and soil moisture values, measured at each sensor



every few minutes.
While both data sets contain measurements for multiple

physical attributes, our experiments focus only on the light
data from the Intel data set (measured in Lux), and the rel-
ative humidity data from the SensorScope data (measured
in percentage). We restrict our attention to these two at-
tributes because they exhibit larger standard deviations than
the others. The other attributes (in particular, temperature)
show less spatial variation, so high prediction accuracy for
them would be statistically less significant.

4.1 Estimating the Distance Metric

Our algorithms require knowledge of the distance met-
ric d(i, j) constraining the difference in sensor readings.
Our experiments have shown that the best such metric tends
to be rather independent of the Euclidean distance between
sensors. When trying to fit a mathematical function of the
Euclidean inter-sensor distances to the difference in values
at the sensor nodes, the result has high sum-of-squares fit-
ting errors. This is not particularly surprising, given that the
Euclidean distance ignores important physical parameters
such as walls or presence or absence of shade.

We therefore use an empirical method to directly esti-
mate a distance metric, using a training data set. We define
the “distance” between two sensors to be the worst case ab-
solute difference in readings at the two sensors over all in-
stances of the training data.

Specifically, we partition our data sets intotraining in-
stancesand thetest instances. The training instances are
used by the algorithm to estimate the distances, and the test
instances are used to evaluate the subsequent prediction ac-
curacy. Thus, the sensor network can adapt its sampling
strategy based on the correlations estimated from past mea-
surements.

Each training instance consists of snapshots in time of
all the sensor values. For each sensor pair(i, j), we com-
pute the largest difference in values betweeni andj over all
training instances, and use the difference as an estimate of
d(i, j) for the future. It is straightforward to prove that the
function estimated in this way forms a metric. In effect, we
are embedding the sensors from the Euclidean space into a
new metric spaced. This eliminates the dependency on the
physical coordinates of the sensors, while allowing signifi-
cantly better performance in our experiments.

4.2 Experimental Methodology

We consider one attribute each from the two data sets:
light from the first data set, and humidity from the second
data set. For each data set, we fix the value ofk (the number
of sensors to sample) to be around 10% of the total number
of sensors.

We report on three sets of experiments: estimating the
maximum and average functions for the light measurements
in the Intel Labs deployments, and estimating the average
function for the humidity measurements in the SensorScope
deployment. (An estimate of the maximum humidity in the
SensorScope deployment performed similarly.) For each
experiment, we use the following methodology:

1. Sample the entire set of sensors multiple times over a
time window to generate a set of training instances.
Each training instance corresponds to a snapshot of
all the sensor readings in the deployment at a partic-
ular time. Similarly, sample the set of sensors multiple
times over another time window to generate a set of
test instances.

2. Clean the training and test instances to remove outliers.

3. Estimate the distance metricd(i, j) based on the train-
ing instances, and run the sensor selection algorithm
using this distance metric to get a setS of k sensors.

4. For each test instance, use the readings at thek sensors
and the prediction functioñf(x(S)) to estimate the ob-
jective functionf(x), and calculate the prediction er-
ror |f̃(x(S)) − f(x)|.

We evaluate our prediction errors in two ways. The first
involves estimating the standard deviation of the sensors
in the training data set, and comparing our prediction er-
ror with the standard deviation. The second involves com-
paring our prediction errors with the average and minimum
prediction error obtained by using multiple randomly gen-
erated sets of sensors, using the same test instances.

4.3 Light Measurements

In this set of experiments, we use our algorithms on light
measurements from the Intel Labs sensor deployment. We
perform our analysis using data for ambient light (measured
in Lux) detected at each sensor, taken over a period of 9
days from March 1st to March 9th. We cleaned the data by
using a median filter to eliminate outliers.

We do not consider measurements after 9PM and before
9AM, since we observe that the mean and standard devi-
ation during these times are usually very close to zero. In
other words, there is no challenge in providing accurate pre-
dictions, and good performance on these data would not be
indicative of the quality of our or other algorithms.

We start by calculating the standard deviation of the test
data to estimate the dispersion of the data. This helps us
gauge the statistical significance of results for any predic-
tion algorithm on this data set. Figure 1 plots the coefficient
of variation (the ratio of standard deviation to the mean) for
the light measurements over different days and times. The



standard deviation varies from 50% to as much as 130% of
the mean, with an average standard deviation of 71% of the
mean.
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Figure 1. Coefficient of variation over light
measurements.

Our experiments on this data set involve predicting the
average value and the maximum value in the sensor deploy-
ment using measurements from just 5 sensors (k = 5).

The data from March 1st and 2nd were used for train-
ing instances, and the remaining seven days (March 3rd to
9th) provided the test instances. Based on the data from the
first two days, a distance metric was learned which was then
used for estimating both the maximum and the average.

4.3.1 Predicting the Average

We first present results for prediction of theaveragevalue.
We run ourk-median approximation algorithm on this dis-
tance metric to choose a subsetS of 5 sensors that will sub-
sequently be used for prediction, i.e., we compute an ap-
proximate 5-median solution.

For each day, our algorithms use only the readings from
the sensors inS to estimate the average light value at all the
sensors. We evaluate the performance at 3-hour intervals
from 9AM until 9PM. Since sensor readings were not al-
ways available at the precise same time for all locations,
and to reduce the impact of noise, we perform compar-
isons against the average over a 10-minute window centered
around the time of prediction.

In Figure 2, we plot the percentage error in prediction of
the average light measurement using our algorithm, for all 7
days and times from 9AM until 9PM. Our prediction error
varies from 0.3% to 31%, with an average prediction error
of 10.1%. Notice that this constitutes a seven-fold reduction
compared to the standard deviation value.
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Figure 2. Predicting the Average: Prediction
error using the k-median algorithm.

We next compare the prediction error against that ob-
tained by using 20 different random subsets of size 5 on
each day of the test instances. We report the minimum and
the mean of the errors obtained by the random subsets. Fig-
ure 3 plots the prediction error using ourk-median based
algorithm versus those obtained by the “best” random selec-
tion (corresponding to the minimum error over all the trials)
and a “mean” random selection (corresponding to the mean
error). Over the seven days of test data, the average predic-
tion error using the subsetS (10.1%) significantly outper-
forms the “mean” random selection and is even better than
the “best” random selection (18.8%) using 20 trials in each
day. Note that for the random selection comparisons, the
randomly chosen subsets are allowed to change from day to
day (as opposed to our algorithm’s use of the same subsetS
for all the days).
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Figure 3. Predicting the Average: Compar-
ison of the k-median algorithm against the
minimum and average of 20 random trials.

In separate experiments, we pick random subsets of 5,
10 or 15 nodes and use them to predict the average over all



the days of the test data. We report the minimum and mean
prediction error over 50 repetitions of this experiment. For
sets of 5 nodes, the mean prediction error over 50 random
iterations is 18.1%, while the minimum prediction error is
12.7%. Notice that the best such set can only be determined
in retrospect, yet thek-median algorithm outperforms the
best fixed set over 50 random trials. For 10 nodes, the mean
prediction error is around 13.5%, while the minimum error
is 10.1%. It took 15 sensors for the average prediction error
over 50 iterations to exceed our algorithm’s performance.
Our results show that the use of thek-median algorithm
gives almost a threefold saving in the number of sensors
that need to be sampled, when compared against the results
of random sampling. Table 1 summarizes these results.

Scheme Avg Error Minimum Error
5-median 10.1 -
5 random samples 18.1 12.7
10 random samples 13.5 10.1
15 random samples 9.7 7.7

Table 1. Predicting the Average: Comparison
of the k-median algorithm against random tri-
als with larger subsets.

4.3.2 Predicting the Maximum

Next, we look at results for predicting themaximumvalue
among all sensors, using a subset of just 5 sensors. Using
the greedyk-center approximation algorithm withk = 5,
we choose a subsetS of 5 sensors to be subsequently used
for prediction, i.e., a 5-center solution.

The prediction error over the seven days of test data
varies from 0% to 59%, with an average prediction error of
14.9%. As before, we compare this performance against the
minimum and mean error from 20 random sets of 5 nodes
chosen each day. Figure 4 plots the prediction errors for
our k-center algorithm versus the random trials for all 7
days. Our algorithm significantly outperforms the error cor-
responding to the mean of the random trials, and most of the
time also does better than the minimum of the random trials
for each day.

As in the case of estimating the average, we also com-
pare our algorithm against 50 trials of a randomly chosen
set of 5, 10, or 15 sensors that is kept constant over all days.
As earlier, the mean and minimum prediction error over 50
random trials of 5 sensors is worse than that of our algo-
rithm, and it takes 15 randomly chosen sensors to improve
on the performance of the 5-center solution. Table 2 sum-
marizes these results.
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Figure 4. Predicting the Maximum: Compari-
son of the k-center algorithm against the min-
imum and average of 20 random trials.

Scheme Avg Error Minimum Error
5-center 14.9 -
5 random samples 23.7 17.2
10 random samples 19.8 15.1
15 random samples 14.7 10.7

Table 2. Predicting the Maximum: Compari-
son of the k-center algorithm against random
trials with larger sensor sets.

4.4 Humidity Measurements

In a third set of experiments, we use our algorithms
on humidity measurements (measured in percentage) taken
from the SensorScope sensor deployment, an outdoor envi-
ronment. The data were recorded over a period of 4 days
from October 1st to October 4th, 2007, at intervals of a few
minutes. We cleaned the data by using a median filter to
remove outliers.

Figure 1 plots the coefficient of variation (the ratio of
standard deviation to the mean) for the humidity measure-
ments over different days and times. The standard deviation
varies between 4.2% and 18% of the mean, with an average
standard deviation of 10.4% of the mean. Thus, the outdoor
humidity data have intrinsically less spatial variance than
the indoor light data. (The other measured quantities in this
data set varied even less.)

Our algorithm uses data from October 1st as training data
to construct the empirical distance metric. Measurements
over the remaining three days were used as test cases.

Based on the estimated metric, we run thek-median ap-
proximation algorithm withk = 3 to choose a subsetS of
3 sensors. That subset is then used to predict the average
humidity for the remaining three days. As before, we eval-
uate the prediction at 3-hour intervals, and smoothen out the
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Figure 5. Coefficient of variation over humid-
ity measurements.

measured values over 10-minute windows.
Figure 6 shows the prediction error (in percentage) in es-

timating the average over the three days at 3-hour intervals.
The error varies from 0.34% to 7%, with an average pre-
diction error of 2.2%, roughly a five-fold improvement over
the standard deviation.
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Figure 6. Predicting the Average: Prediction
error using the k-median algorithm.

As before, we compare the prediction error against the
best and average error over 50 trials of randomly chosen sets
of 3, 6, or 9 sensors. Once chosen, the set is used to predict
the average humidity over all three days of test instances.
The mean prediction error of 50 random iterations choosing
3 sensors is 2.6%, and the minimum is 1.7%. For 6 sensors,
these values improve to 2.0% and 1.3%, respectively, and
for 9 random samples to 1.1% and 0.47%. The results are
summarized in Table 3.

In this case, the performance of thek-median algorithm
is not significantly better than that of a randomly chosen set

Scheme Avg Error Minimum Error
3-median 2.2 -
3 random samples 2.6 1.7
6 random samples 2.0 1.3
9 random samples 1.1 0.47

Table 3. Predicting the Average: Comparison
of the k-median algorithm against random tri-
als with larger sensor sets

of the same size. The reason partly lies in the low spatial
variance of the data, and partly in the high temporal vari-
ance. Simply by the law of large numbers, after sufficiently
many trials, the error of random sets will likely be small;
due to the small spatial variance, the number of such trials
needed is not very high. More importantly, the high tem-
poral variance evident in Figure 5 suggests that the distance
learned from the first day of data may not be most appropri-
ate for later days.

5 Conclusions

We have presented an optimization formulation for find-
ing the best set of sensors to predict an aggregate function.
We assumed worst-case behavior of the actual values sub-
ject to hard, metric-induced constraints.This led to proving
an equivalence with selecting ak-median resp.k-center so-
lution. Our experiments on real-world data showed that
these approaches can be expected to choose good sets for
prediction in practice.

Many interesting questions remain for future work. For
instance, the behavior of sensors at distanced need not be
symmetric. It may be known that sensori’s value is always
at least as large as sensorj’s, and they differ by at most
d(i, j). This leads to an asymmetric notion of distance. In
future work, we intend to investigate whether good approxi-
mation algorithms exist for this asymmetric distance notion.

The general framework we provide in Section 3.3 gives
a characterization of the adversary’s behavior. However, it
does not guarantee the existence of a good approximation
algorithm to optimize the particular objective function at
hand. Extending the known algorithms fork-median and
k-center to different coverage problems would be very in-
teresting. Indeed, this question is meaningful even when the
adversary will not reveal identical values at all locations. In
particular, it would be intriguing how well one can approx-
imate themedianof all sensor values.

Much like standard adversarial analysis (e.g., in online
algorithms), the adversary in our model is very powerful, in
that he knows all choices that will be made by the algorithm.
A standard way to guard against such worst-case behavior



is via randomness, and the assumption that the adversary
knows the randomized algorithm, but not the outcome of
the algorithm’s coin flips. Devising a randomized algorithm
for selecting a good subsetS to sample in this framework is
quite intriguing.

For example, if the sensors are evenly (and very densely)
spaced on a line, and we want to estimate the average by
sampling just one sensor, then the best deterministic algo-
rithm should choose the midpoint of the line. However,
choosing the point13 half the time, and23 the other half re-
sults in an expected error only2/3 of the deterministic strat-
egy. In ongoing work, we are investigating the best possible
distribution to use for sampling sets, on a line or in more
general settings. Even for a line, the problem is non-trivial;
the maximum improvement possible over the deterministic
strategy appears to lie strictly between4

7 and 1
2 .
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