

Motivation

- Why study social networks?
- Many kinds of complex relationships
 - Reputation systems
 - Research collaborations
 - Friendships
 - Teamwork
- Strategic considerations shape the structure of relationships
- These relationships impact outcomes
 - Aggregate and individual output
 - Quantity of information
 - Variety of goods and services

Setting

- Individuals have intrinsic value
- Allocate resources to others
- Resulting connections generate value
- Study what structures are likely to form and analyze their properties

Model elements

- Players $N = \{1, \ldots, n\}$, n finite
- Intrinsic values $\alpha = \{\alpha_1, \ldots, \alpha_n\}$ $(\alpha_i > 0)$
- Linking budgets $\beta = \{\beta_1, \ldots, \beta_n\}$ ($0 < \beta_i < 1$)
- Strategies: Allocate linking budget across other n-1 players

-
$$\phi_i = (\phi_{i1}, \dots, \phi_{in}), \ (\phi_{ii} = 0, \sum_j \phi_{ij} \le \beta_i)$$

- S_i denotes feasible allocations
- Strategy profile $\Phi = [\phi_{ij}]$
- Strength of link ij is $f(\phi_{ij})$,

$$-f(0)=0, f$$

- strictly increasing and strictly concave

$$-\lim_{x\to 0} f'(x) = \infty$$

Utility: directional separation

- Links confer utility by allowing intrinsic value to be shared
- Interaction may benefit both parties; I examine extreme cases
- Separate benefit flow into directional components: Giving and Taking
 - Giving: ϕ_{ij} sends value from i to j
 - Taking: ϕ_{ij} sends value from j to i

Utility: directional separation

- Links confer utility by allowing intrinsic value to be shared
- Interaction may benefit both parties; I examine extreme cases
- Separate benefit flow into directional components: Giving and Taking
 - Giving: ϕ_{ij} sends value from i to j
 - Taking: ϕ_{ij} sends value from j to i

Main result:

- Under Giving: Equilibrium networks are typically inefficient
- Under Taking: Equilibrium networks are always efficient

Utility: network values

- Network value v_i (depends on Giving/Taking)
- Utility: $u_i = \alpha_i + v_i$
- Network value in the two cases:

Giving: $v_i = \sum_j f(\phi_{ji})(\alpha_j + v_j)$

Taking: $v_i = \sum_j f(\phi_{ij})(\alpha_j + v_j)$

Utility: implications

- Marginal value derived from another agent depends on
 - Strength of link
 - Other's intrinsic value (exogenous)
 - Other's network value (endogenous)
 - More value from "better" individuals
- Value from all paths is counted
 - Redundancy is valued
 - Feedback effects
 - Wide externalities

Utility: deriving utility functions

- Matrix of link strengths $f(\Phi)$

•
$$u = \alpha + f(\Phi)u$$
 (Taking)

•
$$u = (I - f(\Phi))^{-1} \alpha$$

• Let
$${old A}=(I-f(\Phi))^{-1}$$

• Taking:
$$u=Alpha,$$
 Giving: $u=A'lpha$

Utility: the matrix A

$$A = \sum_{p=0}^{\infty} f(\Phi)^p = I + f(\Phi) + f(\Phi)^2 + \cdots$$

- Valid when $|f(\Phi)| < 1$, requires joint condition on eta and $f(\cdot)$
- $f(\Phi)^p$ computes weight of all length-p paths
- A aggregates effects from all paths in $f(\Phi)$

Network definitions

 $f(\Phi)$ is an

- Equilibrium network if Φ constitutes a pure strategy Nash equilibrium of $(N, \{S_i\}, \{u_i\})$
- "Efficient" (utilitarian) network if $\sum_i u_i(\Phi) \ge \sum_i u_i(\Phi')$ for all feasible Φ'
- Interior network if $\phi_{ij} > 0$ for all $j \neq i$
- Empty network if $\phi_{ij} = 0$ for all $j \neq i$

Nash Networks under Giving

Proposition. Interior equilibria satisfy the conditions $\sum_j \phi_{ij} = \beta_i$ for all $i \in N$, and

$$f'(\phi_{ij})a_{ji} = f'(\phi_{ij'})a_{j'i}$$

for all distinct $i, j, j' \in N$.

(Recall: a_{ji} = total weight of all paths from j to i in $f(\Phi)$)

- Non-interior: partitioned into interior subgroups
 - Eliminated by most refinements

Efficient Networks under Giving

Proposition. Any efficient network is interior, satisfies the conditions $\sum_j \phi_{ij} = \beta_i$ for all $i \in N$, and

$$f'(\phi_{ij})\sum_{k}a_{jk} = f'(\phi_{ij'})\sum_{k}a_{j'k}$$

for all distinct $i, j, j' \in N$.

Results: intrinsic values

Corollary: Under Giving, the equilibrium and efficient networks are independent of intrinsic values (α).

• "Good" strategies depend only on the network structure (Φ)

Theorem. Assume $n \ge 3$. There is an efficient Nash network under giving if and only if $\beta_i = \beta_j$ for all i, j.

- With homogeneous budgets, the regular network is both Nash and efficient
- With different budgets, the FOC for efficiency can not be satisfied in equilibrium

Results: taking

Theorem. Under Taking, Nash networks and socially efficient networks exist and are interior. They satisfy the conditions $\sum_j \phi_{ij} = \beta_i$ for all $i \in N$, and

$$f'(\phi_{ij})u_j = f'(\phi_{ij'})u_{j'}$$

for all distinct $i, j, j' \in N$.

Results: other linking technologies (f)

•
$$f(x) = x$$

- Similar message for efficiency of equilibria
- $f'(0) < \infty$
 - Allows analysis of component structures
- f non-increasing
 - May not be individually optimal to exhaust budget
 - This will break the efficiency result under Taking

A few connections to the literature

- Strategic network formation
 - Strategic linking choices
 - Restrictive assumptions
 - (Jackson & Wolinsky (1996), Bala & Goyal (2000), Ballester, Calvó-Armengol &
 Zenou (2005))
- Interdependent utilities
 - Links interpreted as parameters in utility functions
 - Takes these patterns as given
 - (Bergstrom (1999), Bramoullé (2001), Hori (1997), Shinotsuka (2003))
- Sociology: centrality
 - Calculate centrality/prestige from a given network
 - Weight contributions by the value of the contributor
 - (Hubbell (1965), Bonacich (1972, 1987, 2005), Katz (1953))

Conclusion and further work

- New model of strategic networking
- Relationship strength is continuous
- Separate benefit flow into directional components
- Taking behavior is efficient, Giving typically is not
- Tie underlying heterogeneity of individuals to kinds of network structures that are likely to form
- Ties to "centrality" in sociology

Model G Model A u1=1.86 u1=2.67 .16 .45 .05 .34 Nash 800. / .097/ .007 .08 .002 u3=1.52 u2=1.94 .003 u3=1.33 u2=2.31 .003 .02 U=5.70 U=5.94 u1=1.77 u1=2.67 .34 .34 .16 .16 Efficient .007 .007 .08 .08 .003 u3=2.01 u2=2.15 u2=1.94 .02 .02 .003 U=5.94 U=5.94

Equilibrium and efficient networks

Results: intrinsic values

Corollary: Under Giving, the equilibrium and efficient networks are independent of intrinsic values.

• "Good" strategies depend only on the network structure

Network structures: symmetry

Asymmetric setup with symmetric prediction:

- Taking can also produce the regular network with asymmetric parameters
- Example: $\alpha = (3, 2, 2), \quad \beta = (0.015, 0.1, 0.1), \quad f(x) = \sqrt{x}$
 - Being well-connected can compensate for low intrinsic value

Symmetric setup with an Asymmetric prediction

- Under Giving, the regular network may not be the only equilibrium
- Example: n = 3, $\beta = (.1, .1, .1)$, $f(x) = \delta x^{\lambda}$, $\lambda \approx 1$
 - Resembles a "star"

Results: intrinsic values

Comparing Taking and Giving under Homogeneous intrinsic qualities

- When $\alpha_i = \bar{\alpha}$ for all $i \in N$, the efficient networks in Model A and Model G coincide.
- Aggregate utility is the same across models at the efficient solution, but the distribution can be very different.

Network structures: heterogeneity

• Stars

- Common in two-way flow models, not one-way
- Robust prediction in this setting
- Taking: Single agent with larger intrinsic value or linking budget (or both)
- Giving: Single agent with larger linking budget

Also in symmetric environments

• Stars are always efficient under Taking and never so under Giving

Network structures: heterogeneity

- "Standard" network models: wheel structure (Bala and Goyal (2000))
- Not predicted in this model
 - Decay
 - Wrong kind of heterogeneity
- Empty network
 - Occurs in binary link models for high costs
 - Approximated here by small budgets
 - Equilibrium under Giving

Results: linear case

• Constant returns to investment: f(x) = x

Proposition. Under Giving with identical budgets, the efficient networks are those for which $\sum_{j} \phi_{ij} = \beta_i$ for all *i*.

- There are both efficient and inefficient equilibria.
 - Empty network
 - Regular network

Results: linear case

Proposition. Under Giving with strictly ordered budgets:

- All paired networks are equilibria
- The unique efficient network is assortatively paired

Results: linear case

Proposition. Under Taking with identical budgets and intrinsic values:

- Equilibrium and efficient networks coincide
- They are those for which $\sum_j \phi_{ij} = eta$ for all i

Results: other forms

- $f'(0) < \infty$ f non-increasing
- f non-concave

Conclusion

- New model of strategic networking
- Relationship strength is continuous
- Benefit calculation produces well-known centrality measure
- Separate benefit flow into directional components
- Tie underlying heterogeneity of individuals to kinds of network structures that are likely to form
- Taking behavior is efficient, Giving typically is not
- Future work
 - Two-way flow
 - Experiments

Centrality

- Sociologists have been concerned with measuring centrality
- Many ideas:
 - Degree
 - Closeness
 - Betweenness
 - Eccentricity
- Weighted centrality
 - Katz (1953)
 - Hubbell (1965)
 - Bonacich (1972, 1987, 2005)