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Stochastic Models for Social
(and Other) Networks

◮ General problem: need to model graphs with varying properties

◮ Many ad hoc approaches:

⊲ Conditional uniform graphs (Erdös and Rényi, 1960)

⊲ Bernoulli/independent dyad models (Holland and Leinhardt, 1981)

⊲ Biased nets (Rapoport, 1949a;b; 1950)

⊲ Preferential attachment models (Simon, 1955; Barabási and Albert, 1999)

⊲ Geometric random graphs (Hoff et al., 2002)

⊲ Agent-based/behavioral models (including “classics” like Heider (1958); Harary

(1953))

◮ A more general scheme: discrete exponential family models (ERGs)

⊲ General, powerful, leverages existing statistical theory (e.g., Barndorff-Nielsen
(1978); Brown (1986); Strauss (1986))

⊲ (Fairly) well-developed simulation, inferential methods (e.g., Snijders (2002);

Hunter and Handcock (2006))

◮ Today’s focus – parameterization for ERG models
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Basic Notation

◮ Assume G = (V, E) to be the graph formed by edge set E on vertex set V

⊲ Here, we take |V | = N to be fixed, and assume elements of V to be uniquely
identified

⊲ If E ⊆
˘

{v, v′} : v, v′ ∈ V
¯

, G is said to be undirected ; G is directed iff
E ⊆

˘

(v, v′) : v, v′ ∈ V
¯

⊲ {v, v} or (v, v) edges are known as loops; if G is defined per the above and
contains no loops, G is said to be simple

⋄ Note that multiple edges are already banned, unless E is allowed to be a multiset

◮ Other useful bits

⊲ E may be random, in which case G = (V, E) is a random graph

⊲ Adjacency matrix Y ∈ {0, 1}N×N (may also be random); for G random, will

usually use notation y for adjacency matrix of realization g of G
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Exponential Families for
Random Graphs

◮ For random graph G w/countable support G, pmf is given in ERG form by

Pr(G = g|θ) =
exp

(

θT
t(g)

)

∑

g′∈G
exp (θT t(g′))

IG(g) (1)

◮ θT
t: linear predictor

⊲ t : G → R
m: vector of sufficient statistics

⊲ θ ∈ R
m: vector of parameters

⊲
∑

g′∈G
exp

(

θT
t(g′)

)

: normalizing factor (aka partition function, Z)

◮ Intuition: ERG places more/less weight on structures with certain features,
as determined by t and θ

⊲ Model is complete for pmfs on G, few constraints on t
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Dependence Graphs and
ERGs

◮ Let Y be the adjacency matrix of G

⊲ Yij = 1 if (i, j) ∈ E and Yij = 0 otherwise

⊲ Yc
ab,cd,... denotes cells of Y not corresponding to pairs (a, b), (c, d), . . .

◮ D = (E , E′) is the conditional dependence graph of G

⊲ E = {(i, j) : i 6= j, i, j ∈ V }: collection of edge variables

⊲ {(i, j), (k, l)} ∈ E′ iff Yij 6⊥ Ykl|Y
c
ij,kl

◮ From D to G: the Hammersley-Clifford Theorem (Besag, 1974)

⊲ Let KD be the clique set of D. Then in the ERG case,

Pr(G = g|θ) =
1

Z(θ,G)
exp

0

@

X

S∈KD

θS

Y

(i,j)∈S

yij

1

A (2)

⊲ If homogeneity constraints imposed, then sufficient statistics are counts of
subgraphs of G isomorphic to subgraphs forming cliques in D
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Model Construction Using
Dependence Graphs

◮ Hammersley-Clifford allows us to specify random graph models
which satisfy particular edge dependence conditions

◮ Simple examples (directed case):

⊲ Independent edges: Yij 6⊥ Ykl|Y
c
ij,kl iff (i, j) = (k, l)

⋄ D is the null graph on E ; thus, the only cliques are the nodes of D

themselves (which are the edge variables of G)

⋄ From this, H-C gives us Pr(G = g|θ) ∝ exp
“

P

(vi,vj) θijyij

”

, which is the

inhomogeneous Bernoulli graph with θij = logitΦij

⋄ Assuming homogeneity, this becomes Pr(G = g|θ) ∝ exp
“

θ
P

(vi,vj) yij

”

,

which is the N, p model – note that |E| is the unique sufficient statistic!
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Model Construction Using
Dependence Graphs, Cont.

◮ Examples (cont.):

⊲ Independent dyads: Yij 6⊥ Ykl|Y
c
ij,kl iff {i, j} = {k, l}

⋄ D is a union of K2s, each corresponding to an {(i, j), (j, i)} pair; thus, each
dyad of G contributes a clique, as does each edge (remember, nested
cliques count)

⋄ H-C gives us Pr(G = g|θ, θ′) ∝ exp
“

P

{vi,vj}
θijyijyji +

P

(vi,vj) θ′
ijyij

”

;

this is the inhomogeneous independent dyad model with θ = ln 2mn

a2 and
θ′ = ln a

2n

⋄ As before, we can impose homogeneity to obtain

Pr(G = g|θ, θ′) ∝ exp
“

θ
P

{vi,vj}
yijyji + θ′ P

(vi,vj) yij

”

, which is the

u|man model with sufficient statistics M and 2M + A
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A More Complex Example:
The Markov Graphs

◮ An important advance by (Frank and Strauss, 1986): the Markov graphs

◮ The basic definition: Yij 6⊥ Ykl|Y
c
ij,kl iff |{i, j} ∩ {k, l}| > 0

⊲ Intuitively, edge variables are conditionally dependent iff they share at least one endpoint

⊲ D now has a large number of cliques; these are the edge variables, stars, and triangles of G

⋄ In undirected case, sufficient statistics are the k-stars and triangles of G (or counts
thereof, if homogeneity is assumed)

⋄ In directed case, sufficient statistics are in/out/mixed k-stars and the full triangle census of
G (minus the superfluous null triad)

◮ Markov graphs capture many important structural phenomena

⊲ Trivially, includes density and (in directed case) reciprocity

⊲ k-stars equivalent to degree count statistics, hence includes degree distribution (and mixing,
in directed case)

⊲ Through triads, includes local clustering as well as local cyclicity and transitivity in digraphs

◮ The downside: hard to work with, prone to poor behavior – but, nothing’s free....
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Beyond the Markov Graphs: Partial
Conditional Dependence

◮ Bad news: Hammersley-Clifford doesn’t help much for
long-range dependence

⊲ In general, D becomes a complete graph – all subsets of edges generate

potential sufficient statistics

◮ Alternate route: partial conditional dependence models
⊲ Based on Pattison and Robins (2002): Yij 6⊥ Ykl|Y

c
ij,kl only if some condition is

satisfied (e.g., yc
ij belongs to some set C)

⊲ Lead to sufficient statistics which are subset of H-C stats

◮ Example: reciprocal path dependence (Butts, 2006)

⊲ Assume edges independent unless endpoints joined by (appropriately directed)

paths
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Reciprocal Path Conditions

◮ Basic idea: head of each edge can
reach the tail of the other

⊲ Weak case: (directed) paths each
way are sufficient

⊲ Strong case: paths cannot share

internal vertices

◮ Intuition: extended reciprocity

⊲ Possibility of feedback through
network

⊲ In strong case, channels of

reciprocation share no

intermediaries

ji/k

l

j/li/k

ji

k l

ji

lk

i j

k l

ji/k

l

Carter T. Butts – p. 10/20



Reciprocal Path Dependence
Models

◮ Define aRb ≡“a and b satisfy the reciprocal path condition”

⊲ Negation written as aRb

⊲ aRb ⇔ bRa, aRb ⇔ bRa

◮ Theorem: Let Y be a random adjacency matrix whose pmf is a

discrete exponential family satisfying a reciprocal path dependence

assumption under condition R. Then the sufficient statistics for Y are

functions of edge sets S such that (i, j)R(k, l) ∀ {(i, j), (k, l)} ⊆ S.

◮ Sufficient statistics under reciprocal path dependence, homogeneity:

⊲ Strong, directed: cycles

⊲ Weak, directed: cycles, certain unions of cycles

⊲ Strong, undirected: subgraphs w/spanning cycles

⊲ Weak, directed: subgraphs w/spanning cycles, some unions thereof
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Application to Sample
Networks

Taro Exchange Texas SAR EMON

Coleman Friendship Network Year 2000 MIDs
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Cycle Census ERG Fits

Taro Exchange Texas EMON

θ̂ s.e. Pr(> |Z|) θ̂ s.e. Pr(> |Z|)

Edges 2.0526 1.4914 0.1687 −2.5933 0.4064 0.0000

Cycle3 1.1489 1.0175 0.2588 2.6117 0.9033 0.0038

Cycle4 −2.1619 0.8713 0.0131 −0.7302 0.5911 0.2167

Cycle5 −0.0789 0.6297 0.9003 0.1765 0.2081 0.3964

Cycle6 −0.4999 0.2772 0.0714 −0.0300 0.0316 0.3423

ND 320.234; RD 56.112 on 226 df ND 415.89; RD 97.14 on 295 df

Friendship MIDs

θ̂ s.e. Pr(> |Z|) θ̂ s.e. Pr(> |Z|)

Edges −4.1778 0.0957 0.0000 −6.9336 0.3406 0.0000

Cycle2 1.5615 0.2082 0.0000 7.8360 2.4368 0.0013

Cycle3 0.7222 0.2092 0.0006 −3.0203 0.7638 0.0001

Cycle4 0.6866 0.1819 0.0002 43.3479 0.0188 0.0000

Cycle5 0.1663 0.1062 0.1173 −1.9328 0.0029 0.0000

Cycle6 −0.0063 0.0334 0.8508

ND 7286.4; RD 1384.4 on 5256 df ND 50308.62; RD 988.48 on 36285 df
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A New Direction: Potential
Games

◮ So far, our focus has been on dependence hypotheses
⊲ Define the conditions under which one relationship could affect another, and hope that this

is sufficiently reductive

⊲ Complete agnosticism regarding underlying mechanisms – could be social dynamics,

unobserved heterogeneity, or secret closet monsters

◮ A choice-theoretic alternative?
⊲ In some cases, reasonable to posit actors with some control over edges (e.g., out-ties)
⊲ Existing theory often suggests general form for utility

⊲ Reasonable behavioral models available (e.g., multinomial choice)

◮ The link between choice models and ERGs: potential games
⊲ Increasingly wide use in economics, engineering

⊲ Equilibrium behavior provides an alternative way to parameterize ERGs
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Potential Games and Network
Formation Games

◮ Potential games (Monderer and Shapley, 1996)

⊲ Let X by a strategy set, u a vector utility functions, and V a set of players. Then (V, X, u) is

said to be a potential game if ∃ ρ : X 7→ R such that

ui

`

x′
i, x−i

´

− ui (xi, x−i) = ρ
`

x′
i, x−i

´

− ρ (xi, x−i) ∀i ∈ V, x, x′ ∈ X.

◮ Consider a simple family of network formation games (Jackson, 2006) on Y:

⊲ Each i, j element of Y is controlled by a single player k ∈ V with finite utility uk; can choose
yij = 1 or yij = 0 when given an “updating opportunity”

⋄ We will here assume that i controls Yi·, but this is not necessary

⊲ Theorem: Let (i) (V,Y, u) in the above form a game with potential ρ; (ii) players choose

actions via a logistic choice rule; and (iii) updating opportunities arise sequentially such that

every (i, j) is selected with positive probability, and (i, j) is selected independently of the

current state of Y. Then Y forms a Markov chain with equilibrium distribution

Pr(Y = y) ∝ exp(ρ(y)), in the limit of updating opportunities.

◮ One can thus obtain an ERG as the long-run behavior of a strategic process, and
parameterize in terms of the hypothetical underlying utility functions
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Various Utility/Potential
Components

◮ Edge payoffs (homogeneous)

⊲ ui (y) = θ
P

j yij

⊲ ρ (y) = θ
P

i

P

j yij

◮ Edge payoffs (inhomogeneous)

⊲ ui (y) = θi

P

j yij

⊲ ρ (y) =
P

i θi

P

j yij

◮ Edge covariate payoffs

⊲ ui (y) = θ
P

j yijxij

⊲ ρ (y) = θ
P

i

P

j yijxij

◮ Reciprocity payoffs

⊲ ui (y) = θ
P

j yijyji

⊲ ρ (y) = θ
P

i

P

j<i yijyji

◮ 3-Cycle payoffs

⊲ ui (y) = θ
P

j 6=i

P

k 6=i,j yijyjkyki

⊲ ρ (y) = θ
3

P

i

P

j 6=i

P

k 6=i,j yijyjkyki

◮ Transitive completion payoffs

⊲ ui (y) =

θ
P

j 6=i

P

k 6=i,j

2

4

yijykiykj + yijyikyjk

+yijyikykj

3

5

⊲ ρ (y) = θ
P

i

P

j 6=i

P

k 6=i,j yijyikykj

◮ And many more! (But caveats apply...)

⊲ Not all reasonable u lead to potential
games – e.g., 2-path and shared partner
effects cannot be separated

⊲ Not all heterogeneity can be modeled

(e.g., individual-specific reciprocity

payoffs)
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Empirical Example: Advice-Seeking Among
Managers

◮ Sample empirical application from
Krackhardt (1987): self-reported
advice-seeking among 21 managers in a
high-tech firm

⊲ Additional covariates: friendship, authority

(reporting)

◮ Demonstration: selection of potential
behavioral mechanisms via ERGs

⊲ Models parameterized using utility components
⊲ Model parameters estimated using maximum

likelihood (Geyer-Thompson)

⊲ Model selection via AIC
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Advice-Seeking ERG – Model
Comparison

◮ First cut: models with independent dyads:

Deviance Model df AIC Rank

Edges 578.43 1 580.43 7

Edges+Sender 441.12 21 483.12 4

Edges+Covar 548.15 3 554.15 5

Edges+Recip 577.79 2 581.79 8

Edges+Sender+Covar 385.88 23 431.88 2

Edges+Sender+Recip 405.38 22 449.38 3

Edges+Covar+Recip 547.82 4 555.82 6

Edges+Sender+Covar+Recip 378.95 24 426.95 1

◮ Elaboration: models with triadic dependence:

Deviance Model df AIC Rank

Edges+Sender+Covar+Recip 378.95 24 426.95 4

Edges+Sender+Covar+Recip+CycTriple 361.61 25 411.61 2

Edges+Sender+Covar+Recip+TransTriple 368.81 25 418.81 3

Edges+Sender+Covar+Recip+CycTriple+TransTriple 358.73 26 41 0.73 1

◮ Verdict: data supplies evidence for heterogeneous edge formation preferences (w/covariates),
with additional effects for reciprocated, cycle-completing, and transitive-completing edges.
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Advice-Seeking ERG – AIC
Selected Model

Effect θ̂ s.e. Pr(> |Z|) Effect θ̂ s.e. Pr(> |Z|)

Edges −1.022 0.137 0.0000 ∗ ∗ ∗ Sender14 −1.513 0.231 0.0000 ∗ ∗ ∗

Sender2 −2.039 0.637 0.0014 ∗∗ Sender15 16.605 0.336 0.0000 ∗ ∗ ∗

Sender3 0.690 0.466 0.1382 Sender16 −1.472 0.232 0.0000 ∗ ∗ ∗

Sender4 −0.049 0.441 0.9112 Sender17 −2.548 0.197 0.0000 ∗ ∗ ∗

Sender5 0.355 0.495 0.4734 Sender18 1.383 0.214 0.0000 ∗ ∗ ∗

Sender6 −4.654 1.540 0.0025 ∗∗ Sender19 −0.601 0.190 0.0016 ∗∗

Sender7 −0.108 0.375 0.7726 Sender20 0.136 0.161 0.3986

Sender8 −0.449 0.479 0.3486 Sender21 0.105 0.210 0.6157

Sender9 0.393 0.496 0.4281 Reciprocity 0.885 0.081 0.0000 ∗ ∗ ∗

Sender10 0.023 0.555 0.9662 Edgecov (Reporting) 5.178 0.947 0.0000 ∗ ∗ ∗

Sender11 −2.864 0.721 0.0001 ∗ ∗ ∗ Edgecov (Friendship) 1.642 0.132 0.0000 ∗ ∗ ∗

Sender12 −2.736 0.331 0.0000 ∗ ∗ ∗ CycTriple −0.216 0.013 0.0000 ∗ ∗ ∗

Sender13 −0.986 0.194 0.0000 ∗ ∗ ∗ TransTriple 0.090 0.003 0.0000 ∗ ∗ ∗

Null Dev 582.24; Res Dev 358.73 on 394 df

◮ Some observations...

⊲ Arbitrary edges are costly for most actors
⊲ Edges to friends and superiors are “cheaper” (or even positive payoff)
⊲ Reciprocating edges, edges with transitive completion are cheaper...

⊲ ...but edges which create (in)cycles are more expensive; a sign of hierarchy?

Carter T. Butts – p. 19/20



Conclusion

◮ Models for complex networks pose complex problems of parameterization

⊲ Many ways to describe dependence among elements

⊲ Once one leaves simple cases, not always clear where to begin

◮ Three basic approaches for ERG parameterization

⊲ “Straight” Hammersley-Clifford (conditional dependence)

⊲ Partial conditional dependence

⊲ Potential games

◮ We’ve come a long way, but many open problems remain

⊲ “Inverse” conditional/partial conditional dependence: given a graph statistic, what
dependence conditions give rise to it?

⊲ More reductive partial conditional dependence conditions

⊲ Generalizations of the potential game result
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Erdös, P. and Rényi, A. (1960). On the evolution of random

graphs. Public Mathematical Institute of Hungary Academy

of Sciences, 5:17–61.

Frank, O. and Strauss, D. (1986). Markov graphs. Journal of

the American Statistical Association, 81:832–842.

20-1



Harary, F. (1953). On the notion of balance of a signed graph.

Michigan Mathematical Journal, 3:37–41.

Heider, F. (1958). The Psychology of Interpersonal Relations.

John Wiley and Sons, New York.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent

space approaches to social network analysis. Journal of the

American Statistical Association, 97(460):1090–1098.

Holland, P. W. and Leinhardt, S. (1981). An exponential fam-

ily of probability distributions for directed graphs (with dis-

cussion). Journal of the American Statistical Association,

76(373):33–50.

Hunter, D. R. and Handcock, M. S. (2006). Inference in curved

exponential family models for networks. Journal of Compu-

tational and Graphical Statistics, 15:565–583.

Jackson, M. (2006). A survey of models of network formation:

Stability and efficiency. In Demange, G. and Wooders, M.,

editors, Group Formation Economics: Networks, Clubs, and

Coalitions. Cambridge University Press, Cambridge.

Krackhardt, D. (1987). Cognitive social structures. Social Net-

works, 9(2):109–134.

20-2



Monderer, D. and Shapley, L. S. (1996). Potential games.

Games and Economic Behavior, 14:124–143.

Pattison, P. and Robins, G. (2002). Neighborhood-based mod-

els for social networks. Sociological Methodology, 32:301–

337.

Rapoport, A. (1949a). Outline of a probabilistic approach to ani-

mal sociology I. Bulletin of Mathematical Biophysics, 11:183–

196.

Rapoport, A. (1949b). Outline of a probabilistic approach to

animal sociology II. Bulletin of Mathematical Biophysics,

11:273–281.

Rapoport, A. (1950). Outline of a probabilistic approach to ani-

mal sociology III. Bulletin of Mathematical Biophysics, 12:7–

17.

Simon, H. A. (1955). On a class of skew distribution functions.

Biometrika, 42:425–440.

Snijders, T. A. B. (2002). Markov Chain Monte Carlo estima-

tion of exponential random graph models. Journal of Social

Structure, 3(2).

Strauss, D. (1986). On a General Class of Models for Interac-

tion. SIAM Review, 28(4):513–527.

20-3


	References
	Stochastic Models for Social (and Other)
Networks
	Basic Notation
	Exponential Families for Random Graphs
	Dependence Graphs and ERGs
	Model Construction Using Dependence Graphs
	Model Construction Using Dependence Graphs, Cont.
	A More Complex Example: The Markov Graphs
	ptsize {14} Beyond the Markov Graphs: Partial Conditional Dependence
	Reciprocal Path Conditions
	Reciprocal Path Dependence Models
	Application to Sample Networks
	Cycle Census ERG Fits
	A New Direction: Potential Games
	Potential Games and Network Formation Games
	Various Utility/Potential Components
	ptsize {14} Empirical Example: Advice-Seeking Among Managers
	Advice-Seeking ERG -- Model Comparison
	Advice-Seeking ERG -- AIC Selected Model
	Conclusion

