Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions

Carter T. Butts

Department of Sociology and

Institute for Mathematical Behavioral Sciences

University of California, Irvine buttsc@uci.edu

Prepared for the 2008 SIAM Conference, San Diego, CA, 7/10/08.

This work was supported in part by NIH award 5 R01 DA012831-05.

Stochastic Models for Social (and Other) Networks

- General problem: need to model graphs with varying properties
- ► Many *ad hoc* approaches:
 - Conditional uniform graphs (Erdös and Rényi, 1960)
 - Bernoulli/independent dyad models (Holland and Leinhardt, 1981)
 - Biased nets (Rapoport, 1949a;b; 1950)
 - Preferential attachment models (Simon, 1955; Barabási and Albert, 1999)
 - Geometric random graphs (Hoff et al., 2002)
 - Agent-based/behavioral models (including "classics" like Heider (1958); Harary (1953))
- ► A more general scheme: discrete exponential family models (ERGs)
 - General, powerful, leverages existing statistical theory (e.g., Barndorff-Nielsen (1978); Brown (1986); Strauss (1986))
 - Fairly) well-developed simulation, inferential methods (e.g., Snijders (2002); Hunter and Handcock (2006))

- Assume G = (V, E) to be the graph formed by edge set E on vertex set V
 - \triangleright Here, we take |V| = N to be fixed, and assume elements of V to be uniquely identified
 - ▷ If $E \subseteq \{\{v, v'\} : v, v' \in V\}$, *G* is said to be *undirected*; *G* is *directed* iff $E \subseteq \{(v, v') : v, v' \in V\}$
 - $\triangleright \{v, v\}$ or (v, v) edges are known as *loops*; if *G* is defined per the above and contains no loops, *G* is said to be *simple*
 - \diamond Note that multiple edges are already banned, unless *E* is allowed to be a multiset

Other useful bits

- \triangleright *E* may be random, in which case G = (V, E) is a random graph
- ▷ Adjacency matrix $\mathbf{Y} \in \{0, 1\}^{N \times N}$ (may also be random); for *G* random, will usually use notation \mathbf{y} for adjacency matrix of realization *g* of *G*

Exponential Families for Random Graphs

For random graph G w/countable support G, pmf is given in ERG form by

$$\Pr(G = g | \theta) = \frac{\exp\left(\theta^T \mathbf{t}(g)\right)}{\sum_{g' \in \mathcal{G}} \exp\left(\theta^T \mathbf{t}(g')\right)} I_{\mathcal{G}}(g)$$
(1)

► $\theta^T \mathbf{t}$: linear predictor

- $\triangleright \mathbf{t}: \mathcal{G} \to \mathbb{R}^m$: vector of sufficient statistics
- $\triangleright \ \theta \in \mathbb{R}^m$: vector of parameters
- $\triangleright \sum_{g' \in \mathcal{G}} \exp(\theta^T \mathbf{t}(g'))$: normalizing factor (aka partition function, Z)
- Intuition: ERG places more/less weight on structures with certain features, as determined by t and θ
 - \triangleright Model is complete for pmfs on \mathcal{G} , few constraints on t

Dependence Graphs and ERGs

- ► Let Y be the adjacency matrix of G
 - $\triangleright Y_{ij} = 1$ if $(i, j) \in E$ and $Y_{ij} = 0$ otherwise
 - $\triangleright \mathbf{Y}_{ab,cd,...}^{c}$ denotes cells of \mathbf{Y} not corresponding to pairs $(a,b), (c,d), \ldots$
- D = (E, E') is the conditional dependence graph of G
 ▷ E = {(i, j) : i ≠ j, i, j ∈ V}: collection of edge variables
 ▷ {(i, j), (k, l)} ∈ E' iff Y_{ij} ∠ Y_{kl} | Y^c_{ij,kl}
- ▶ From *D* to *G*: the Hammersley-Clifford Theorem (Besag, 1974)
 ▷ Let *K_D* be the clique set of *D*. Then in the ERG case,

$$\Pr(G = g | \theta) = \frac{1}{Z(\theta, \mathcal{G})} \exp\left(\sum_{S \in K_D} \theta_S \prod_{(i,j) \in S} y_{ij}\right)$$
(2)

 \triangleright If homogeneity constraints imposed, then sufficient statistics are counts of subgraphs of *G* isomorphic to subgraphs forming cliques in *D*

Model Construction Using Dependence Graphs

- Hammersley-Clifford allows us to specify random graph models which satisfy particular edge dependence conditions
- ► Simple examples (directed case):
 - ▷ Independent edges: $Y_{ij} \not\perp Y_{kl} | \mathbf{Y}_{ij,kl}^c$ iff (i,j) = (k,l)
 - ♦ *D* is the null graph on \mathcal{E} ; thus, the only cliques are the nodes of *D* themselves (which are the edge variables of *G*)
 - ♦ From this, H-C gives us $Pr(G = g|\theta) \propto \exp\left(\sum_{(v_i, v_j)} \theta_{ij} y_{ij}\right)$, which is the inhomogeneous Bernoulli graph with $\theta_{ij} = \text{logit}\Phi_{ij}$
 - ♦ Assuming homogeneity, this becomes $Pr(G = g|\theta) \propto \exp\left(\theta \sum_{(v_i, v_j)} y_{ij}\right)$, which is the *N*, *p* model note that |E| is the unique sufficient statistic!

Model Construction Using Dependence Graphs, Cont.

Examples (cont.):

- \triangleright Independent dyads: $Y_{ij} \not\perp Y_{kl} | \mathbf{Y}_{ij,kl}^c$ iff $\{i, j\} = \{k, l\}$
 - ◊ D is a union of K₂s, each corresponding to an {(i, j), (j, i)} pair; thus, each dyad of G contributes a clique, as does each edge (remember, nested cliques count)
 - ♦ H-C gives us $Pr(G = g | \theta, \theta') \propto exp\left(\sum_{\{v_i, v_j\}} \theta_{ij} y_{ij} y_{ji} + \sum_{(v_i, v_j)} \theta'_{ij} y_{ij}\right)$; this is the inhomogeneous independent dyad model with $\theta = \ln \frac{2mn}{a^2}$ and $\theta' = \ln \frac{a}{2n}$
 - $\diamond\,$ As before, we can impose homogeneity to obtain

 $\Pr(G = g | \theta, \theta') \propto \exp\left(\theta \sum_{\{v_i, v_j\}} y_{ij} y_{ji} + \theta' \sum_{(v_i, v_j)} y_{ij}\right)$, which is the u | man model with sufficient statistics M and 2M + A

A More Complex Example: The Markov Graphs

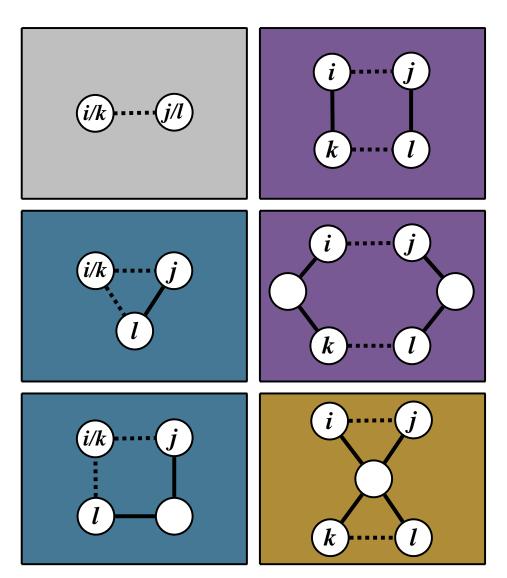
- ► An important advance by (Frank and Strauss, 1986): the Markov graphs
- ► The basic definition: $Y_{ij} \not\perp Y_{kl} |\mathbf{Y}_{ij,kl}^c$ iff $|\{i,j\} \cap \{k,l\}| > 0$
 - > Intuitively, edge variables are conditionally dependent iff they share at least one endpoint
 - \triangleright D now has a large number of cliques; these are the edge variables, stars, and triangles of G
 - \diamond In undirected case, sufficient statistics are the *k*-stars and triangles of *G* (or counts thereof, if homogeneity is assumed)
 - \diamond In directed case, sufficient statistics are in/out/mixed k-stars and the full triangle census of G (minus the superfluous null triad)
- Markov graphs capture many important structural phenomena
 - ▷ Trivially, includes density and (in directed case) reciprocity
 - k-stars equivalent to degree count statistics, hence includes degree distribution (and mixing, in directed case)
 - > Through triads, includes local clustering as well as local cyclicity and transitivity in digraphs
- The downside: hard to work with, prone to poor behavior but, nothing's free....

Beyond the Markov Graphs: Partial Conditional Dependence

- Bad news: Hammersley-Clifford doesn't help much for long-range dependence
 - In general, D becomes a complete graph all subsets of edges generate potential sufficient statistics
- ► Alternate route: partial conditional dependence models
 - ▷ Based on Pattison and Robins (2002): $Y_{ij} \not\perp Y_{kl} | \mathbf{Y}_{ij,kl}^c$ only if some condition is satisfied (e.g., \mathbf{y}_{ij}^c belongs to some set *C*)
 - Lead to sufficient statistics which are subset of H-C stats
- ► Example: *reciprocal path dependence* (Butts, 2006)
 - Assume edges independent unless endpoints joined by (appropriately directed) paths

Reciprocal Path Conditions

- Basic idea: head of each edge can reach the tail of the other
 - Weak case: (directed) paths each way are sufficient
 - Strong case: paths cannot share internal vertices
- ► Intuition: *extended reciprocity*
 - Possibility of feedback through network
 - In strong case, channels of reciprocation share no intermediaries



Reciprocal Path Dependence Models

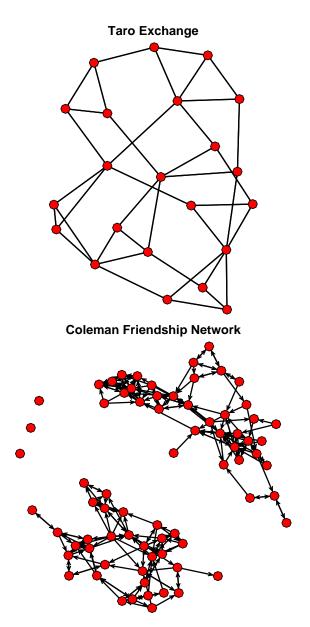
• Define $aRb \equiv$ "a and b satisfy the reciprocal path condition"

- \triangleright Negation written as $a\overline{R}b$
- $\triangleright \ aRb \Leftrightarrow bRa, \, a\overline{R}b \Leftrightarrow b\overline{R}a$
- ► Theorem: Let Y be a random adjacency matrix whose pmf is a discrete exponential family satisfying a reciprocal path dependence assumption under condition *R*. Then the sufficient statistics for Y are functions of edge sets *S* such that $(i, j)R(k, l) \forall \{(i, j), (k, l)\} \subseteq S$.

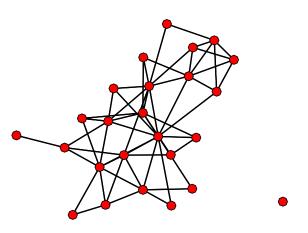
Sufficient statistics under reciprocal path dependence, homogeneity:

- Strong, directed: cycles
- ▷ Weak, directed: cycles, certain unions of cycles
- Strong, undirected: subgraphs w/spanning cycles
- ▷ Weak, directed: subgraphs w/spanning cycles, some unions thereof

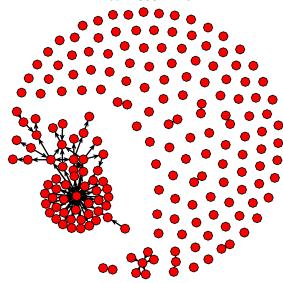
Application to Sample Networks



Texas SAR EMON



Year 2000 MIDs



		Taro Exchai	nge	Texas EMON				
	$\hat{ heta}$	s.e.	$\Pr(> Z)$	$\hat{ heta}$	s.e.	$\Pr(> Z)$		
Edges	2.0526	1.4914	0.1687	-2.5933	0.4064	0.0000		
Cycle3	1.1489	1.0175	0.2588	2.6117	0.9033	0.0038		
Cycle4	-2.1619	0.8713	0.0131	-0.7302	0.5911	0.2167		
Cycle5	-0.0789	0.6297	0.9003	0.1765	0.2081	0.3964		
Cycle6	-0.4999	0.2772	0.0714	-0.0300	0.0316	0.3423		
	ND 320.234	4; RD 56.11	2 on 226 df	ND 415.89; RD 97.14 on 295 df				
	Friendship			MIDs				
	$\hat{ heta}$	s.e.	$\Pr(> Z)$	$\hat{ heta}$	s.e.	$\Pr(> Z)$		
Edges	-4.1778	0.0957	0.0000	-6.9336	0.3406	0.0000		
Cycle2	1.5615	0.2082	0.0000	7.8360	2.4368	0.0013		
Cycle3	0.7222	0.2092	0.0006	-3.0203	0.7638	0.0001		
Cycle4	0.6866	0.1819	0.0002	43.3479	0.0188	0.0000		
Cycle5	0.1663	0.1062	0.1173	-1.9328	0.0029	0.0000		
Cycle6	-0.0063	0.0334	0.8508					
	ND 7286.4; RD 1384.4 on 5256 df				ND 50308.62; RD 988.48 on 36285 df			

A New Direction: Potential Games

So far, our focus has been on *dependence hypotheses*

- Define the conditions under which one relationship could affect another, and hope that this is sufficiently reductive
- Complete agnosticism regarding underlying mechanisms could be social dynamics, unobserved heterogeneity, or secret closet monsters

A choice-theoretic alternative?

- ▷ In some cases, reasonable to posit actors with some control over edges (e.g., out-ties)
- Existing theory often suggests general form for utility
- ▷ Reasonable behavioral models available (e.g., multinomial choice)

► The link between choice models and ERGs: *potential games*

- Increasingly wide use in economics, engineering
- ▷ Equilibrium behavior provides an alternative way to parameterize ERGs

Potential Games and Network Formation Games

- Potential games (Monderer and Shapley, 1996)
 - ▷ Let X by a strategy set, u a vector utility functions, and V a set of players. Then (V, X, u) is said to be a *potential game* if $\exists \rho : X \mapsto \mathbb{R}$ such that

 $u_{i}(x_{i}', x_{-i}) - u_{i}(x_{i}, x_{-i}) = \rho(x_{i}', x_{-i}) - \rho(x_{i}, x_{-i}) \,\forall i \in V, x, x' \in X.$

- Consider a simple family of *network formation games* (Jackson, 2006) on \mathcal{Y} :
 - ▷ Each i, j element of Y is controlled by a single player $k \in V$ with finite utility u_k ; can choose $y_{ij} = 1$ or $y_{ij} = 0$ when given an "updating opportunity"

 \diamond We will here assume that *i* controls \mathbf{Y}_{i} , but this is not necessary

- ▷ Theorem: Let (i) (V, \mathcal{Y}, u) in the above form a game with potential ρ ; (ii) players choose actions via a logistic choice rule; and (iii) updating opportunities arise sequentially such that every (i, j) is selected with positive probability, and (i, j) is selected independently of the current state of **Y**. Then **Y** forms a Markov chain with equilibrium distribution $\Pr(\mathbf{Y} = \mathbf{y}) \propto \exp(\rho(\mathbf{y}))$, in the limit of updating opportunities.
- One can thus obtain an ERG as the long-run behavior of a strategic process, and parameterize in terms of the hypothetical underlying utility functions

Various Utility/Potential Components

- Edge payoffs (homogeneous)
 - $\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j} y_{ij}$ $\triangleright \rho(\mathbf{y}) = \theta \sum_{i} \sum_{j} y_{ij}$
- Edge payoffs (inhomogeneous)
 - $\triangleright u_{i}(\mathbf{y}) = \theta_{i} \sum_{j} y_{ij}$ $\triangleright \rho(\mathbf{y}) = \sum_{i} \theta_{i} \sum_{j} y_{ij}$
- Edge covariate payoffs
 - $\triangleright \ u_i \left(\mathbf{y} \right) = \theta \sum_j y_{ij} x_{ij}$ $\triangleright \ \rho \left(\mathbf{y} \right) = \theta \sum_i \sum_j y_{ij} x_{ij}$
- Reciprocity payoffs

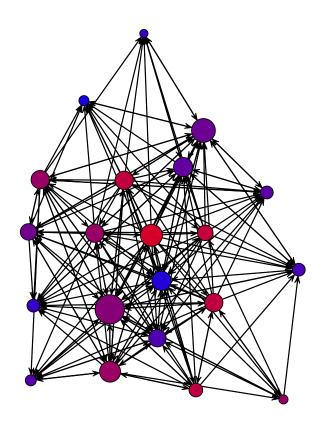
$$\triangleright u_{i}(\mathbf{y}) = \theta \sum_{j} y_{ij} y_{ji}$$
$$\triangleright \rho(\mathbf{y}) = \theta \sum_{i} \sum_{j < i} y_{ij} y_{ji}$$

► 3-Cycle payoffs

- $\triangleright \ u_i \left(\mathbf{y} \right) = \theta \sum_{j \neq i} \sum_{k \neq i,j} y_{ij} y_{jk} y_{ki}$ $\triangleright \ \rho \left(\mathbf{y} \right) = \frac{\theta}{3} \sum_i \sum_{j \neq i} \sum_{k \neq i,j} y_{ij} y_{jk} y_{ki}$
- ► Transitive completion payoffs ▷ $u_i(\mathbf{y}) =$ $\theta \sum_{j \neq i} \sum_{k \neq i,j} \begin{bmatrix} y_{ij}y_{ki}y_{kj} + y_{ij}y_{ik}y_{jk} \\ + y_{ij}y_{ik}y_{kj} \end{bmatrix}$ ▷ $\rho(\mathbf{y}) = \theta \sum_i \sum_{j \neq i} \sum_{k \neq i,j} y_{ij}y_{ik}y_{kj}$
- And many more! (But caveats apply...)
 - Not all reasonable *u* lead to potential games – e.g., 2-path and shared partner effects cannot be separated
 - Not all heterogeneity can be modeled (e.g., individual-specific reciprocity payoffs)

Empirical Example: Advice-Seeking Among Managers

- Sample empirical application from Krackhardt (1987): self-reported advice-seeking among 21 managers in a high-tech firm
 - Additional covariates: friendship, authority (reporting)
- Demonstration: selection of potential behavioral mechanisms via ERGs
 - Models parameterized using utility components
 - Model parameters estimated using maximum likelihood (Geyer-Thompson)
 - Model selection via AIC



Advice-Seeking ERG – Model Comparison

► First cut: models with independent dyads:

	Deviance	Model df	AIC	Rank
Edges	578.43	1	580.43	7
Edges+Sender	441.12	21	483.12	4
Edges+Covar	548.15	3	554.15	5
Edges+Recip	577.79	2	581.79	8
Edges+Sender+Covar	385.88	23	431.88	2
Edges+Sender+Recip	405.38	22	449.38	3
Edges+Covar+Recip	547.82	4	555.82	6
Edges+Sender+Covar+Recip	378.95	24	426.95	1

Elaboration: models with triadic dependence:

	Deviance	Model df	AIC	Rank
Edges+Sender+Covar+Recip	378.95	24	426.95	4
Edges+Sender+Covar+Recip+CycTriple	361.61	25	411.61	2
Edges+Sender+Covar+Recip+TransTriple	368.81	25	418.81	3
Edges+Sender+Covar+Recip+CycTriple+TransTriple	358.73	26	410.73	1

Verdict: data supplies evidence for heterogeneous edge formation preferences (w/covariates), with additional effects for reciprocated, cycle-completing, and transitive-completing edges.

Advice-Seeking ERG – AIC Selected Model

Effect	$\hat{ heta}$	s.e.	$\Pr(> Z)$		Effect	$\hat{ heta}$	s.e.	$\Pr(> Z)$	
Edges	-1.022	0.137	0.0000	* * *	Sender14	-1.513	0.231	0.0000	* * *
Sender2	- 2.039	0.637	0.0014	* *	Sender15	16.605	0.336	0.0000	* * *
Sender3	0.690	0.466	0.1382		Sender16	-1.472	0.232	0.0000	* * *
Sender4	-0.049	0.441	0.9112		Sender17	-2.548	0.197	0.0000	* * *
Sender5	0.355	0.495	0.4734		Sender18	1.383	0.214	0.0000	* * *
Sender6	-4.654	1.540	0.0025	* *	Sender19	-0.601	0.190	0.0016	* *
Sender7	-0.108	0.375	0.7726		Sender20	0.136	0.161	0.3986	
Sender8	-0.449	0.479	0.3486		Sender21	0.105	0.210	0.6157	
Sender9	0.393	0.496	0.4281		Reciprocity	0.885	0.081	0.0000	* * *
Sender10	0.023	0.555	0.9662		Edgecov (Reporting)	5.178	0.947	0.0000	* * *
Sender11	-2.864	0.721	0.0001	* * *	Edgecov (Friendship)	1.642	0.132	0.0000	* * *
Sender12	-2.736	0.331	0.0000	* * *	CycTriple	-0.216	0.013	0.0000	* * *
Sender13	-0.986	0.194	0.0000	* * *	TransTriple	0.090	0.003	0.0000	* * *
			Nul	l Dev 582.24	4; Res Dev 358.73 on 394 df				

Some observations...

- Arbitrary edges are costly for most actors
- Edges to friends and superiors are "cheaper" (or even positive payoff)
- ▷ Reciprocating edges, edges with transitive completion are cheaper...
- ▷ ...but edges which create (in)cycles are more expensive; a sign of hierarchy?

- Models for complex networks pose complex problems of parameterization
 - Many ways to describe dependence among elements
 - ▷ Once one leaves simple cases, not always clear where to begin
- ► Three basic approaches for ERG parameterization
 - ▷ "Straight" Hammersley-Clifford (conditional dependence)
 - Partial conditional dependence
 - Potential games
- ► We've come a long way, but many open problems remain
 - Inverse conditional/partial conditional dependence: given a graph statistic, what dependence conditions give rise to it?
 - More reductive partial conditional dependence conditions
 - Generalizations of the potential game result

1 References

- Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. *Science*, 206:509–512.
- Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. John Wiley and Sons, New York.
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical Society, Series B*, 36(2):192–236.
- Brown, L. D. (1986). *Fundamentals of Statistical Exponential Families, with Applications in Statistical Decision Theory*. Institute of Mathematical Statistics, Hayward, CA.
- Butts, C. T. (2006). Cycle census statistics for exponential random graph models. IMBS Technical Report MBS 06-05, Institute for Mathematical Behavioral Sciences, University of California, Irvine, Irvine, CA.
- Erdös, P. and Rényi, A. (1960). On the evolution of random graphs. *Public Mathematical Institute of Hungary Academy of Sciences*, 5:17–61.
- Frank, O. and Strauss, D. (1986). Markov graphs. *Journal of the American Statistical Association*, 81:832–842.

- Harary, F. (1953). On the notion of balance of a signed graph. *Michigan Mathematical Journal*, 3:37–41.
- Heider, F. (1958). *The Psychology of Interpersonal Relations*. John Wiley and Sons, New York.
- Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis. *Journal of the American Statistical Association*, 97(460):1090–1098.
- Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs (with discussion). *Journal of the American Statistical Association*, 76(373):33–50.
- Hunter, D. R. and Handcock, M. S. (2006). Inference in curved exponential family models for networks. *Journal of Computational and Graphical Statistics*, 15:565–583.
- Jackson, M. (2006). A survey of models of network formation: Stability and efficiency. In Demange, G. and Wooders, M., editors, *Group Formation Economics: Networks, Clubs, and Coalitions*. Cambridge University Press, Cambridge.
- Krackhardt, D. (1987). Cognitive social structures. *Social Networks*, 9(2):109–134.

- Monderer, D. and Shapley, L. S. (1996). Potential games. *Games and Economic Behavior*, 14:124–143.
- Pattison, P. and Robins, G. (2002). Neighborhood-based models for social networks. *Sociological Methodology*, 32:301– 337.
- Rapoport, A. (1949a). Outline of a probabilistic approach to animal sociology I. *Bulletin of Mathematical Biophysics*, 11:183– 196.
- Rapoport, A. (1949b). Outline of a probabilistic approach to animal sociology II. *Bulletin of Mathematical Biophysics*, 11:273–281.
- Rapoport, A. (1950). Outline of a probabilistic approach to animal sociology III. *Bulletin of Mathematical Biophysics*, 12:7– 17.
- Simon, H. A. (1955). On a class of skew distribution functions. *Biometrika*, 42:425–440.
- Snijders, T. A. B. (2002). Markov Chain Monte Carlo estimation of exponential random graph models. *Journal of Social Structure*, 3(2).
- Strauss, D. (1986). On a General Class of Models for Interaction. *SIAM Review*, 28(4):513–527.