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Preface

The present notes are derived from a course taught at the University of Southern California. The focus of
the course is on the mathematical and algorithmic theory underpinning the connections between networks
and information. These connections take two predominant forms:

Network structure itself encodes a lot of information. For instance, friendships between individuals
let us draw inferences about shared interests or other attributes (location, gender, etc.). Similarly,
hyperlinks between documents indicate similar topics, but can also be interested as endorsements, and
thus hint at quality. The list of scenarios in which network structure helps us interpret information
about individual nodes continues beyond this list, and will be explored in more detail throughout these
notes.

Networks also play a crucial role in disseminating or gathering information. This applies both to social
networks, in which communication between individuals happens naturally, and computer networks,
which are designed explicitly to facilitate the exchange of information and distributed computations.
We will draw analogies between the two types of networks, and investigate the mathematical under-
pinnings of the diffusion of information over networks in the later chapters of these notes.

These notes are designed to accompany a one-semester graduate-level course in computer science. We
assume a solid mathematical background, and familiarity with basic algorithmic techniques, including flows
and cuts; the necessary topics are covered in textbooks by Kleinberg and Tardos [257] and Cormen et al. [116].
In particular, we will assume familiarity with Linear Programming (see, e.g., [102, 236]) and the concept of
approximation algorithms [212, 387], as well as with basic notions of randomization in algorithms [301, 314].
A basic understanding of graph theory is also required (see, e.g., [57, 134]).

0.1 Further Reading

Several recent books cover topics overlapping with the content of these notes. “The Structure and Dynamics
of Networks” [327] by Newman, Barabási and Watts collects a number of recent papers on network analysis
and epidemic processes on networks, predominantly with a physics bent in the type of analysis. The collection
“Network Analysis” edited by Brandes and Erlebach [71] covers many of the algorithmic and mathematical
foundations of static network analysis.

The recent book “Social and Economic Networks” [225] by Matthew Jackson covers several of the same
problems studied here, in particular the diffusion of innovations and modeling and properties of networks.
Its focus tends to be on essentially uniformly random models of networks, and mean-field approximations
in the style also performed in the physics literature. The book “Social Network Analysis” by Wasserman
and Faust [393] covers the tools and concepts employed by sociologists in the analysis of social networks in
great detail; the book “Social Network Analysis: A Handbook” by Scott [364] gives a more concise and basic
introduction to these topics.

The recent book “Community Detection and Mining in Social Media” [378] covers many of the same
topics as the present notes. The focus there is more on the data aspect (whereas the present notes focus
more on proofs), so the two sets of notes are complementary.
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Chapter 1

Background

1.1 The early visionary

This course is about the interplay between link network structure and information. There are two natural
ways in which these can interact: The information can spread by using the edges of the network, or the
network itself can be (part of) the information to be analyzed. Naturally, these two views are not mutually
exclusive: often, we will want to analyze networks whose function it is to spread information. Similarly, the
mere existence of a network to go with other information will often allow for information to spread as well.
Lest this discussion be too abstract, let us begin by considering two of the most prominent types of networks
in this course:

1. The World Wide Web (WWW) consists of web pages and the links between them. The links add sig-
nificantly to the (textual and other) information content of the pages. They allow a focused navigation
of the body of text. Furthermore, they indicate which pages may be about related topics, or more
relevant, by virtue of heavy linking patterns. Thus, the WWW predominantly falls into the second
category above. However, since the owners of web pages will also have access to the pages they link
to, or pages further down chains of links, information tends to propagate along links as well, as pages
copy important information from others.

2. Social Networks are made up of individuals and their relationships, such as friendships, collaborations,
romantic relationships, etc. They serve many different functions, including social support, economic
exchanges, and — quite crucially — the spread of information. Thus, they fall more into the first
category. However, the mere fact that an individual forms links with others tends to imply that
they might care about similar information, or share similar interests. Thus, the network structure
also reveals a great deal of information about the individuals, beyond what could be discerned with
standard socio-economic questions.

The great proliferation of networked bodies of information, and the much more ready availability of data
on all kinds of networks, have recently led to a significant increase in interest in computational analysis of
such networks. In many scenarios, such analysis, beyond its scientific interest, also has significant commercial
or other benefit. For an example, look no further than the importance of web search, which we will discuss
in more detail in Chapter 2.

Before embarking on our exploration of many of the algorithmic questions in this broad domain, we
should revisit one of the visionary thinkers, who anticipated many of the recent developments and challenges
well before computers were used pervasively, or most of the technologies were available.

In his visionary article “As We May Think” from 1945 [80], V. Bush is articulating the next great research
challenge for a generation of scientists. The backdrop for the article was the success of the Manhattan Project,
in which the development of the Atomic Bomb during World War II managed to unite and focus a large
fraction of the scientists of the US on a common project, with significant scientific success. In his article,
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Bush articulates his vision that scientists should continue to strive for solving the next big challenge in a
similar collaborative effort. The big challenge he wants to see addressed is the vast amount of information
available, and the lack of organization thereof. In order to deal with the overwhelming amount of information,
Bush suggests having machines which would help with storing, organizing, and physically accessing such
information.

Technologically, Bush suggests the use of microfilm for storage, head-mounted cameras for individuals
which would let them take pictures easily, and scanner/photography technology. The core of his envisioned
technological approach is called “Memex”, and could be considered the equivalent of a modern desk and
workstation. It consists of a desk with multiple embedded monitors, which can display text, photos, etc.
Books and other documents (pictures, data) are stored in the Memex, and can be easily accessed.

The visionary part is his view of creating associations between documents. When reading, say, a paper,
a reader may need to look up a definition in another paper or book. At that point, having opened both
documents to the relevant pages, a button would allow the reader to create an association between the two
documents. Thus, Bush really anticipated hyperlinks here. His reasoning is that the rigid structure of a
library index does not correspond to the associative type of thinking performed by humans. Bush anticipates
not only creating such associations, but also sharing them with others, so that others will not have to perform
the same type of work. He calls an annotated document a trail. Given the importance of such trails for
others, he even anticipates a profession of trail blazers, whose job it is to read and process documents, and
create associations helpful for others. Notice how virtually all of these visions have come to pass in the
WWW: the WWW itself is a giant shared trail, and many sites (Yahoo!, Open Directory, Wikipedia) can
be construed as trail blazers.

Bush already anticipates a number of important research challenges in this context. Besides the obvious
technological ones, two important directions are privacy and automated processing. If trails, or personal
information, are shared, then it becomes important to specify what types of information should not be
leaked, and which ones are safe to share. Privacy in data mining has become a huge research area, albeit
one which this course will not touch upon. The second question is how to automatically create associations,
or mine the associations for useful information that was not obviously contained in the data originally. This
question is becoming even more paramount as the amount of information in the WWW keeps increasing
dramatically, to the point that the trails themselves are now so numerous that the reader may not be able
to identify the most pertinent ones. These types of questions will be among the core topics of this course.

1.2 Graph structure in the web

The most prominent example of a large body of networked information is the World Wide Web. It quintessen-
tially meets the focus of this course: the hyperlinks between pages containing textual information (or other
formats) naturally enrich the information content, and allow us to draw additional inferences about the
content, its importance, or relationships between multiple pages. Given the central importance of the web,
we begin with an exploration of some of its basic graph-theoretic properties.

The presentation here closely follows the paper “Graph Structure in the Web” by Broder et al. [75]. It
treats the World Wide Web as a directed graph, whose nodes are the static pages, and whose edges are the
hyperlinks between them. This graph is also called the Web graph. The reported data are from a crawl
in May 1999, and thus several orders of magnitude smaller than they would be today. Nevertheless, it is
interesting to investigate some of the relative sizes of different parts of the Web.

1.2.1 Connectivity Structure

The crawl user by Broder et al. [75] contained ca. 203 million nodes and 1.5 billion edges. Of these,
roughly 91% were contained in one large weakly connected component. The fact that there is only one
such component is not surprising since there is only one World Wide Web. It would be rather surprising to
have two completely disconnected large components. The exact percentage of pages in the large component
should be taken with a grain of salt. After all, one may argue that small components not connected to or
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from the “bulk” of the Web may have a much smaller chance of being discovered.
In looking at these numbers, one may suspect that a few highly connected “hubs” are really in charge

of connecting all of the other nodes to each other. This suspicion turns out to be incorrect. Even when all
nodes of degree more than 5 are removed, there is still a large component with more than 59 million pages.
This shows that the connectivity structure is highly “decentralized”, and utilizes most of the Web.

Looking at strongly connected components (SCCs), the picture is somewhat different. There is still only
one strongly connected component (SCC), containing approximately 56 million pages that are mutually
reachable. Again, the existence of only one large SCC should not be surprising, for the same reason as the
weakly connected component. In addition to the giant SCC, the strong connectivity structure contains the
parts labeled IN, OUT, tendrils, and tubes in the diagram; they are all discussed below.

Figure 1.1: Connectivity of the web (diagram taken from [75])

Figure 1.1 gives an overview of the structure. IN denotes the set of all nodes from which the giant SCC
is reachable, but which in turn are not reachable from SCC. Similarly, OUT is the set of all nodes reachable
from SCC, but not able to reach SCC themselves. Each of them contains about 44 million pages.

Hanging off IN and OUT are tendrils containing nodes that are reachable from portions of IN, or that
can reach portions of OUT, without passage through SCC. Tubes are made up of nodes on paths from IN
to OUT, but not passing through the giant SCC. Tubes and tendrils together comprise another 44 million
pages. Finally, there are some completely disconnected strongly connected components, whose contribution
to the total size of the Web is rather negligible.

The depiction of the strong connectivity structure in Figure 1.1 resembles a bow tie, and the connectivity
structure has therefore often been referred to as “bow tie structure” of the web. Notice, however, that every
directed graph has this structure when drawn with respect to one particular strongly connected component.
The bow tie structure really carries no information about the Web specifically; what is more interesting is
the relative sizes of the different components.

Notice that the size of some components, most notably IN and the tendrils of OUT, are more likely to be
underestimated than the others. The reason is that these components suffer from a “seeding” problem: how
to discover a new page if it is not reachable from an already crawled one? Some solutions to this problem
are manual submission of web pages and random generation of names, but nevertheless, one would expect
that these two components are more undersampled than those which are by definition reachable from known
nodes.

Despite these sampling issues, the above structure and relative sizes can be expected to be quite stable,
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even to missed pages. The reason is that any paths from OUT to IN, from SCC to IN, or from OUT to
SCC, would already have been discovered if they existed. So these components will not be contracted.

An interesting consequence of the numbers depicted above is the fraction of node pairs that can reach
each other. If we select two nodes at random, here will be a directed path from one node to the other with
probability roughly 30%. This can be computed by a simple case distinction over the different components
in which the two nodes could land. For such a path exists either when both nodes are in SCC, or one is in IN
and the other in SCC or OUT, or the first one in SCC and the second in OUT. (There are some additional,
but much less frequent, cases involving tendrils and tubes.) Looking at the sizes of the components then
shows that the probability of such selections is about 30%, contrary to the once popular belief that almost
all node pairs are connected to each other via directed paths.

1.2.2 Path Lengths

Once we have established the fraction of page pairs which are connected to each other, a second interesting
question becomes how many hops separate an average or worst-case pair of pages. These can be computed
using invocations of BFS from all start nodes, in time O(nm). Unfortunately, given the orders of magnitude
of m and n, this running time is too slow. No faster algorithm for calculating the diameter of a graph is
currently known.

Broder et al. [75] instead randomly sample node pairs, and measure their distance. This provides a lower
bound on the diameter (since the maximum distance may have eluded the algorithm), and a fairly accurate
estimate of the average distance. Using these techniques, Broder et al. gave a lower bound of 28 on the
diameter of SCC, and a lower bound of 503 on the diameter of the WWW. The much larger bound on the
entire WWW is likely due to long chains of pages (chapters of a book, for instance), which would likely be
either in the OUT component, or inside tendrils. The average distance between sampled pairs of nodes in
the SCC was found to be roughly 16 if the edge direction was considered and roughly 7 if the edge direction
was disregarded.

Given that time O(mn) is too slow for extremely large graphs for computing the diameter, an interesting
approximation algorithms question would be for which types of graphs random sampling gives a good lower
bound on the diameter of the graph, i.e., trying to find a structural characterization of graphs for which
many node pairs have nearly the maximum distance.

1.2.3 Degree Distributions

Another interesting statistic is the degree distribution of web pages. How many links go into or out of the
“typical” page? Broder et al. [75] denote by pi the number of pages with i incoming links, and by qi the
number of pages with i outgoing links. Their analysis finds that pi ∼ i−2.1, and qi ∼ i−2.72, for several orders
of magnitude of i. Thus, both the indegree and outdegree seem to follow a power law.

Remark 1.1 A power law is a degree distribution of the form pi = C · i−α, for some constants C,α > 0. It
can be recognized “heuristically” by drawing the distribution in a log-log plot. Then, log pi = logC−α log i,
so the power law appears as a straight line with slope −α and intercept logC. In order to be meaningful,
a power law should normally manifest itself over at least three orders of magnitude. We will discuss power
laws in much more detail in Chapter 6.

How interesting is it to observe a power law degree distribution? By itself, a power law does not tell
us much about the structure of the graph: there are still many completely different graph structures which
would all have the same degree distribution. In particular, the term “power law graph” does not really carry
much meaning.

However, one sense in which the power law observation is somewhat interesting is that it clearly rules
out the simplest graph model — namely the Erdős-Rényi G(n, p) model [150] as an accurate description of
the web graph. In an Erdős-Rényi graph of n nodes, each edge is present independently with probability
p. The result is that the degree distributions are Binomial. In particular, the degrees will be sharply
concentrated around their expectation pn. Erdős-Rényi graphs are often used as default models, absent a
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better understanding of the graph structure, and the degree distribution observed by Broder et al. rule out
that G(n, p) could be an accurate model.

We should also stress here that the interesting part of a power law is that it captures a fairly large
number (only polynomial decay) of nodes with high values of i, i.e., large in-degree or out-degree. Not too
surprisingly, the indegrees have a heavier tail, since it requires less effort to receive a significant number of
incoming links than to create a significant number of outgoing ones.

1.3 Further Reading

The early history of the WWW, including Bush’s paper and many other position documents and milestones,
are described in a short history of the WWW from 1945–1995, available online [114]. For a personal account
of the early days and invention of the Web from one of its inventors, Tim Berners-Lee, see his book “Weaving
the Web” [44].

Another early paper analyzing graph properties of the Web is [255]. In fact, it also presents some graph
models discussed later, web search algorithms, and algorithms for community detection. Beyond degree
distributions and path lengths, it analyzes the frequencies of certain dense subgraphs, and connectivity
properties of local subgraphs.

Some of the mathematical issues that will be explored in this course are described nicely in a survey of
research directions accompanying a talk given by David Donoho [139].
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Chapter 2

Web Search using Links, and Spectral
Analysis

In this chapter, we investigate the use of web graph structure to improve web search. This application
cuts straight to the heart of this course, in that the network structure augmenting the textual information
contained in web pages can be used to significantly improve the performance of information extraction
algorithms. Our focus, after a brief discussion of the issues encountered in web search in general, will be on
two algorithms: Hits and PageRank. The latter underlies the successful search engine Google.

Both of the algorithms are based on computing eigenvectors of certain matrices representing the Web
graph. The reader unfamiliar with (or rusty on) basic linear algebra might find this a good time to consult
standard linear algebra texts such as Strang’s [375] or Horn and Johnson’s [219]. The eigenvector based
algorithms in PageRank and Hits also bear some similarity with techniques used in analyzing textual data,
specifically Latent Semantic Analysis. We therefore turn our attention to that topic in Section 2.5.

2.1 Challenges In Searching

Writing a search engine involves many challenges. The first type are technical: writing a crawler that deals
with the many types of formats, and — more challenging — all the types of errors human authors of web
pages introduce, is itself a complicated task. In addition, crawlers also have to avoid overloading web servers
and deal with connection timeouts. A good crawler needs to repeat crawls frequently, to avoid the problem
of having stale or outdated information available in searches. This is particularly important for searches
about recent or upcoming events, to which the correct answers changes frequently.

A more recent important trend is the development of the “deep web”: information which is not readily
available in web pages, but rather stored in data bases, and accessible only through query forms. It is not
clear how such information could (or should) be accessible to search engines, and how it can be returned in
response to queries.

Designing the actual search engine to deal with the large numbers of queries encountered in practice is
also a significant engineering challenge, and solving it successfully has played as large a part as algorithmic
insights in the success of current search engines. However, in this course, we will focus more on the algorithmic
challenges inherent in answering different types of queries. For this purpose, it is useful to have a brief look at
the different types of queries commonly posed to search engines. This list is neither exclusive nor exhaustive,
but highlights some of the issues a web search engine designer will have to take into account.

1. Specific queries, such as “Does Netscape support the JDK 1.1 code-signing API?” As we will discuss
in detail below, the difficulty in handling specific queries is scarcity : there are very few or no pages
which contain the required information or keywords, and it is often difficult to determine the identity
of these pages.
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2. Broad-topic queries, such as “Find information about the Java programming language.” Here, we have
the opposite problem: the number of pages that could potentially be relevant is far too large for a
human user to digest. We will need to devise techniques to narrow down or rank the set of pages
returned.

3. Similar-page queries, such as “Find pages ‘similar’ to java.sun.com.” The problem here is to determine
in what respects the pages are supposed to be similar to the present one. This requires, at least
implicitly, forming an estimate of the topic or content of a page.

4. Current events. Here, the challenge is that the data base needs to be very up to date, and hence the
crawling needs to be regular. For such dynamic changes, one might fear that link structure will not
change fast enough to help improve accuracy.

5. Navigational queries, such as “Home page of the Sun corporation.” Such a query essentially replaces
the formation of a bookmark as navigational help. Therefore, it is important that the best fit be clearly
identified and listed first.

6. (Personalized) Opinion, such as “The best hotel under 100 in Los Angeles.” Here in particular, the
search engine might even need to know more about the opinions of the searcher, but also needs to
aggregate opinions expressed in pages to form some kind of consensus.

In dealing with these different types of queries, the first broad class of algorithmic challenges is the
“classic” information retrieval (IR) problem of extracting useful information from a large body of text or
other sources. For instance, different authors use different formats (html, pdf, xml, jpg, etc.), different
authoring styles, or different terminology to refer to the same idea or object. Extracting the meaning or
intent of text has been a traditionally hard problem, and is a research area of its own. We will discuss a very
basic technique in Section 2.5, but will otherwise not make any attempts to cover this area in this class.

In the context of web search, the traditional IR problem is further complicated by the fact that the authors
of the individual pages may have goals vastly differing from those of the search engine or the searcher. Many
web sites are actively misrepresenting their content or importance in order to attract more visitors. Common
techniques include adding interesting words even when they do not relate to the page’s content (called content
spamming), or linking to a page from other pages such as wikis or blogs (called link spamming), in order to
make the page appear more relevant. As a result, there has been a lot of recent research work on dealing
with such web spam, and more generally, the area of adversarial information retrieval has been very active.

Here, we will spend more time exploring solutions to the problems caused by specific and broad queries.
A sparse query may have only few (or no) results, even though the searcher’s intent would result in relevant
answers. A broad query might have thousands or millions of results, and it becomes imperative to extract
the ones most likely to be useful. Both commonly occur because the user — not knowing which pages
will answer his query — does not know which particular keywords to enter to have the engine return these
queries.

The problem of sparse queries can be at least partially solved using traditional IR techniques, such as
augmenting a search by known synonyms, or other words frequently used by other searchers together with
the search terms. However, the link structure provides perhaps much more useful additional information.
For instance, imagine that the search is for “car manufacturers”. The searcher’s intent is probably to find
the websites of Toyota, Honda, etc. However, some or many of these sites may not contain the exact search
terms. To deal with this issue, we can notice that there will likely be many websites containing the phrase
“car manufacturers”, and linking to the sites of actual car manufacturers. Thus, using information contained
in linking (or linked-to) pages, we can infer additional information about a web site.

Link structure may also help us deal with the abundance problem: the number of pages containing a
query can be extremely large, and must be ordered by relevance. To estimate a page’s relevance, we can
consider the number and nature of links it receives, while positing that incoming links implicitly express some
notion of endorsement. Thus, other things being equal, pages with more links could appear more relevant.
These ideas essentially underlie most of the successful search engines used today, and we will elaborate on
the underlying mathematics in more detail in the next sections.
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2.2 The HITS Algorithm

The HITS algorithm was suggested by Kleinberg [251], and is one of the first algorithms to use link structure
in order to deal with the abundance problem. It has two components: first, it constructs a focused subgraph
of the web; second, it uses “hub” and “authority” weights to identify particularly relevant pages.

The first component of HITS deals with the problem mentioned above in the context of sparse queries:
that some of the most relevant pages might not contain the query terms. To deal with this issue, the
algorithm first identifies a core set of approximately 200 pages using standard text-based search. This set
is expanded by adding all the pages linked to from the core set, and some pages linking to the core. Since
many pages could conceivably link to one page in the core set, the number of in-links is restricted to about
50, which are chosen heuristically. In total, this generates a focused induced subgraph G of n ≈ 3000 nodes.

The second component of HITS aims to deal with the issue of broad searches, and attempts to find the
most “relevant” pages in G. It is based on the observation that a page could be relevant for two reasons:
(1) it could be a good authority, containing genuine information about the topic, or (2) it could be a good
hub, collecting links to many good authorities.

The distinction, and the introduction of hubs, requires a bit more justification. Why are we not simply
considering authorities and their linking behavior to each other? In fact, we will consider this approach in
the context of the PageRank algorithm (which forms the core of Google’s ranking system) in Section 2.3.
One justification for considering hubs in addition to authorities is that much of the World Wide Web forms
a competitive environment, in which multiple authoritative pages on the same topic may not link to each
other. For example, in the context of “car manufacturer” web pages discussed previously, we would not
expect the most authoritative pages — such as Honda, Toyota, or Ford — to recommend each other to a
customer. Any connection between these pages will have to be indirect, by virtue of other pages considering
all of them authoritative.

To identify which authorities are good, we use the observation that good authorities should be pointed to
by (many) good hubs. In turn, a hub is good if it points to (many) good authorities. The tacit assumption
here is that links constitute an endorsement. The definition of what constitutes a good hub or authority is
circular. However, we can translate it into an actual algorithm as follows.

Each page v has authority weight av and hub weight hv, initialized to 1. In any one iteration, these are
updated, by having authorities inherit authority weights from the hubs that point to them, and hubs inherit
hub weight from the authorities they point to. Thus, one iteration updates

a′v =
∑

u→v

hu for all v

h′
v =

∑

v→u

a′u for all v.

Notice that after one iteration, the authority weight of v is the number of pages pointing to v, which is
intuitively related to the authority of a page. Further iterations refine this notion by giving more weight to
hubs that are deemed more relevant.

If we let a,h ∈ R
n denote the vectors of all authority and hub weights, we can express the same operations

in terms of matrices as follows. Let B be the adjacency matrix of G, i.e., Bij = 1 iff there is an edge i→ j.
Then, we can rewrite the update rules as

a′ = B⊺ · h
h′ = B · a′.

Hence, the update rule for authority weights can be written as a′ = (B⊺B) · a, and for hub weights as
h′ = (BB⊺) · h. The matrix B⊺B is called the co-citation matrix. We can understand it intuitively as
counting the number of pages pointing to both i and j.

To ensure that this update rule converges to a solution, we need to normalize the weights after each
update, for instance such that

∑
a2v = 1 and

∑
h2
v = 1 (otherwise, the values would keep growing).
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We will revisit the issue of whether the normalized rule converges in a moment. However, we first want
to explore what it would converge to, if at all. Convergence means that subsequent iterations do not cause
any changes, so a,h would have to be fixed points, i.e., a′ = βa and h′ = γh, where β, γ are the respective
normalization constants ensuring that

∑
(a′v)

2 = 1 and
∑

(h′
v)

2 = 1.
Substituting the expressions we derived above gives us that β · a = (B⊺B) · a and γ · h = (BB⊺) · h.

Thus, the authority weights are exactly an eigenvector of B⊺B with eigenvalue β, and the hub weights are
exactly an eigenvector of BB⊺ with eigenvalue γ.

Now, we can return to the issue of convergence of the iterative process (along with the question which
of the eigenvectors are returned). Since the matrix B⊺B is symmetric, R

n has a basis of orthonormal
eigenvectors ω1, ω2, . . . , ωn of B⊺B. Let λ1, λ2, . . . , λn be the corresponding eigenvalues with |λ1| ≥ |λ2| ≥
· · · ≥ |λn|. If the graph corresponding to B⊺B is connected, then by the Perron-Frobenius Theorem for
non-negative matrices, |λ1| > |λ2|, ω1 has all non-negative entries, and each ωi for i > 1 has at least one
negative entry. Because the eigenvectors form a basis, we can write the starting vector of authority weights
as a0 =

∑n
i=1 αiωi, and the previous properties imply that α1 6= 0. The next iteration of authority weights

then gives

a1 = (B⊺B) · a0 =
∑n

i=1 αi(B
⊺B)ωi =

∑n
i=1 αiλiωi.

By induction, we can now show that for any k,

ak =
n∑

i=1

αiλ
k
i ωi. (2.1)

Hence, as k →∞, the normalized authority weights converge to a∞ = ω1. Therefore, authority weights are
just the first eigenvector of B⊺B. By an identical argument, the hub weights converge to the first eigenvector
of BB⊺.

In retrospect, we can thus think of the authority weight computation as using the power iteration method
(see, e.g., [191]) to compute the first eigenvector of B⊺B. Of course, one could instead use different techniques
to compute the eigenvector. Usually, power iteration is quite fast. However, as we can see from Equation
(2.1), its convergence rate depends on the spectral gap |λ1| − |λ2|. In fact, if |λ1| = |λ2|, the method may
not converge at all. On the other extreme, if the spectral gap is bounded by a constant, independent of
the number of nodes n, then the power iteration will converge exponentially fast. (To see this, simply use
triangle inequality for the difference between ak and ω1.)

2.2.1 Extensions

Having been so successful with interpreting the top eigenvector of the co-citation matrix and its transpose,
we may be interested in interpreting its other eigenvectors as well. It turns out that they can be considered
as identifying interesting hub-authority structure in subgraphs of G, and will prove useful in identifying more
specific topic communities within G. We will return to this issue in Section 3.3.1.

The approach of HITS can be easily extended to help with finding pages related to a given page. Dean
and Henzinger [124] suggest simply building the focused subgraph starting at the given page u. All pages
pointing to u, and pointed to by u, are included (up to a given size limit). In addition, all pages pointed to
by parents of u, and pointing to children of u, are also included, up to a degree constraint per page. ([124]
suggest heuristics for deciding which links to retain if the degree of a page is too large.) Once the focused
subgraph has been determined in this way, one simply computes the authority scores and outputs the top
authorities. Naturally, looking at web graph communities containing the page u is another way to uncover
related pages (see, e.g., Section 3.3.1). We will investigate communities in more detail in Chapter 3.

2.3 PageRank

In the previous section, we looked at and analyzed the HITS algorithm, based on Hubs and Authorities.
HITS was designed with a scenario in mind where authorities might not cite each other. Hence, HITS uses
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the idea of conferring authority indirectly through hubs. In scenarios where authorities do cite each other,
such as academic research work, it may be more appropriate to have direct conferral of authority between
nodes. This is the idea behind the PageRank [73] algorithm.

Which algorithm is “better” may be hard to evaluate, and will depend on the query, among others. It
raises the more general question of how one can even evaluate the performance of an algorithm when its
objective function is not clearly defined.

2.3.1 A first approach

Based on our intuition above, we would like to say that a page has high PageRank if it is pointed to by
many pages of high PageRank. On the other hand, if a page points to many other pages, it presumably
will not confer a lot of authority to all of them, but rather divide its authority evenly. This suggests the
following update rule, starting from an arbitrary vector, such as pi = 1/n for all i: the new PageRank is
p′i =

∑

j→i
1

d+(j) · pj , where d+(j) is the out-degree of j.

We can immediately see that at any fixpoint of this update rule, the solution has to be the solution to a
linear system in n variables. We could also converge to the fixpoint by iteratively applying the update rule.
A more concise way of writing the update rule can be obtained as follows. Let M be the square matrix with
rows and columns corresponding to web pages, and Mij =

1
d+(i) if i→ j and 0 otherwise. With pk denoting

the vector of PageRank weights after k iterations, the update rule can be written as pk+1 = M⊺ ·pk. Notice
that the operation has the useful property of “Mass Conservation”: the sum of the PageRank weights of all
pages is always exactly 1, as it is only redivided along outlinks.

2.3.2 A Problem and Solution

The above solution has a problem: it may not converge, and when it does, the result may not be what we
are looking for. Specifically, if a web page has no outlinks (except, say, one to itself), then it will never pass
on PageRank weight to any other nodes, but it will receive PageRank weight. Hence, all of the weight will
collect at sinks, or, more generally, in the sink strongly connected components. All other nodes will have
PageRank 0, which is certainly not corresponding to our intuition. In addition, which sinks will end up
with all the weight will depend on the starting vector, so the PageRanks are not independent of the starting
assignment, which is another undesirable property. Finally, in the case of a cycle of two nodes, the weight
will oscillate between those nodes, but not converge.

There is a simple way to fix all of those problems at once. To motivate the approach, we notice that we
can view M as the matrix of transition probabilities of a random walk on the web graph. When the random
walk is at a node i, it chooses uniformly among all outgoing links, and follows that link. Hence, the first
attempt above corresponds to computing the probabilities of being in a given state i in the limit of infinitely
many steps. We can now modify the random walk as follows: for some small ǫ ≈ 1/7, with probability (1−ǫ),
the new Markov Chain does exactly the same as the old random walk. With the remaining probability ǫ, the
new Markov Chain chooses a uniformly random vertex and jumps to it. This random process can intuitively
be motivated by the model of a random surfer who gets bored and jumps to a uniformly random page with
probability ǫ in each step.

Remark 2.1 While this random surfer model provides a reasonable motivation for the Markov Chain ap-
proach, using it in computation should not be taken as implying that the model is an accurate representation
of actual surfers. Nor should it be assumed that modeling the behavior of a human surfer accurately would
necessarily result in a good search engine. After all, search engines are supposed to augment human search
capacity. It is better to consider the Random Surfer model as a decent intuition for a technical hack necessary
to make a Markov Chain ergodic.

In terms of matrices, we can express the new process as follows. Let 1p×q denote the p× q matrix of all
ones. The update step from the distribution pk (at some time k) to pk+1 can now be written as follows:

pk+1 = (1− ǫ)M⊺ · pk + ǫ · 1n1n×1 = ((1− ǫ)M⊺ + ǫ · 1n1n×n) · pk =: M ′ · pk.
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To show that this new version of PageRank converges, we can use the following well-known theorem
about Markov Chains.

Theorem 2.2 If the Markov Chain M is irreducible and aperiodic (the gcd of all cycle lengths is 1), then
it converges to a unique stationary probability π, i.e., π = M⊺ · π.

The term “irreducible” means that the corresponding graph (of non-zero entries of M) is strongly con-
nected. Certainly, our matrix M ′ is both irreducible and aperiodic, as we added a jump probability of ǫ/n
between any pair of vertices, i.e., the graph is now complete. (Notice that for M that are not aperiodic,
oscillations might occur, as in the example mentioned above of a cycle of length 2. Similarly, the probabilities
of the random walk may depend on where the random walk started. This also applies if M is not irreducible.
On the other hand, if M is irreducible and aperiodic, then the probabilities are independent of the staring
vector.)

Remark 2.3 For students who have seen this before, a very simple Markov Chain coupling argument (about
the simplest possible) shows that the mixing time of this chain is 1/ǫ, i.e., a constant. Simply couple two
copies of the chain as follows: for both chains, use the same random choice for whether to jump randomly or
follow an edge. If following an edge in both, make the choices independently (unless the chains are already
in the same state, in which case make the same choice). If jumping uniformly, couple the choices to have
both chains jump to the same node. It is easy to see that each chain individually is a faithful copy of the
original Markov Chain M ′. Also, the expected time until the chains jump uniformly is 1/ǫ, and after that
point, both chains will always be in the same state. Thus, the expected time to couple is constant.

As a result of the constant mixing time, the convergence is exponentially fast: within O(log 1
δ ) iterations,

the error is at most δ. Regarding computation, we are now dealing with a very large and dense matrix.
However, the fact that most entries are equal to ǫ/n allows for efficient matrix computation techniques to
be applied nevertheless.

The stationary probability π of the matrix M ′ is again the top eigenvector, much like for the HITS
algorithm. Thus, in principle, we could apply techniques other than the original update rule (which again
corresponds to the power iteration). However, given the exponentially fast convergence of power iterations,
there is really no need for other techniques. Of course, in practice, to perform computations of this size,
several computational tricks need to be applied.

We have not yet described how the PageRank algorithm uses the values p = π. At query time, the set
of candidate pages is narrowed down by using text-based matches, as well as several other heuristics. The
other pages are then simply sorted by decreasing pi values. (In practice, Google uses significantly more
heuristics to determine the ordering, but the above is a first approximation of the original approach in the
actual search engine.)

The attentive reader will have noticed two differences between the descriptions of PageRank and HITS:
using the adjacency vs. co-citation matrix, and using the entire web graph vs. a focused subgraph. These
two issues are really orthogonal, and one can consider combining the “focused subgraph” of Section 2.2 with
computing the PageRank measure at query time. The result would likely yield more relevant query results
than plain PageRank. However, it would require recomputing the corresponding PageRank values at query
time, which is not feasible for practical applications.

If an algorithm such as HITS or PageRank does use focused graphs, there are several more natural
heuristics by which one can improve the quality of search results. For instance, different weights can be
associated with different links, depending on how much relevant text (e.g., query terms) appears close to
the link’s anchor. Similarly, different weights can be assigned to different pages based on content-based
similarity to the query topic. Both Chakrabarti et al. [84] and Bharat and Henzinger [48] suggest various
heuristics to use the content of pages to alter the matrix, and obtain improved search results. Chakrabarti
et al. [84] found that most of the relevant text of links occurs between 25 bytes before and 50 bytes after
the anchor, and suggest taking such weights into account. Bharat and Henzinger [48] suggest using the first
set of textual matches as a “comparison point” for the expanded focused graph, and prune or weigh down
pages which are very different.
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2.4 Topic-sensitive PageRank

As discussed above, computing topic-specific PageRank values for each query at query time is too time-
consuming to work on the scale required by search engines nowadays. On the other hand, pre-computing
the PageRank values for all queries and storing them is too memory-intensive. Using the same PageRank
values regardless of the specific query can yield unsatisfactory results.

A middle path has been proposed by Haveliwala [208]. The idea is to precompute PageRank values for a
few “landmark” topics, and then express queries as a combination of these topics. Calculating the PageRank
values from the pre-computed ones may then be significantly easier than recomputation from scratch.

Assume that there are T topics, and each topic t is characterized by its restart probability vector ft, i.e.,
the probability distribution (over pages) with which a new random page is chosen when the Markov Chain
jumps. The idea of using topic-specific restart probabilities was proposed by Rafiei and Mendelzon, who
suggest jumping to a uniformly random page containing the search term [346]. (The context of their work
is computing topic-specific PageRank scores to find out which topics a page is particularly known for.) The
corresponding update rule is then p′ = (1− ǫ)M⊺ · p+ ǫ · ft. By defining the matrix Ft = [ftft . . . ft], we can
express this new rule as

p′ = ((1− ǫ)M⊺ + ǫ · Ft) · p =: Mt · p.
The corresponding PageRank values for topics t are now the stationary probabilities πft

of Mt.
From the PageRank values for topics t, we can compute those for queries q as follows. We can consider a

query as a convex combination of topics, i.e. q =
∑

t γt · t (where
∑

t γt = 1). Then, we can identify with q
the reset vector fq =

∑

t γtft. The interesting observation is that the corresponding stationary probabilities
πfq

can be obtained as convex combinations of the probabilities for the landmark topics:

Lemma 2.4 For each query q with fq =
∑

t γtft, we have πfq
=
∑

t γt · πft
.

Proof. We will show that the vector on the right is stationary for Mq. As the stationary distribution is
unique, this proves that it is equal to πfq

. In order to do so, we use the fact that each πft
is stationary for

its corresponding Mt, and then use the linearity of matrix-vector multiplication and summation:

∑

t γt · πft
=

∑

t γt · ((1− ǫ)M⊺ · πft
+ ǫ · ft)

= (1− ǫ)M⊺
∑

t γt · πft
+ ǫ
∑

t γtft
= (1− ǫ)M⊺

∑

t γt · πft
+ ǫfq

= Mq · (
∑

t γt · πft
).

Hence, the PageRanks of linear combinations of topics can be efficiently computed from precomputed
topic PageRanks.

2.4.1 Single-Word Queries

To go even further, one could try to pre-compute the PageRanks for every single-word query. At first, this
may seem very daunting, as the number of words is far in excess of 100000, and hence, it appears as though
the storage requirement would be larger than 105 · 109 = 1014 PageRank values. However, more careful
indexing may reduce this requirement significantly, as most words do not appear in most pages. A simple
back-of-the envelope calculation observed by Domingos and Richardson [138] goes as follows. Let w denote
a word, and i a page. Further, let pw be the number of pages containing w, and si the number of words
contained in page i, and xw,i = 1 if word w appears in page i. Then, the total required index size is

∑

w pw =
∑

w,i xw,i =
∑

i si.

Notice that the average page contains only about a few hundred words, so the last sum is only about a
few hundred times the number n of pages in the web. While this is not yet quite feasible, it is not too far
removed from current technology.
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For multi-word queries, the situation is a lot more bleak: the number of distinct pairs that appear in
web pages is much higher, and the same kind of simplistic analysis does not work: the sum now becomes
∑

i s
2
i , which may be much larger. Devising good precompuation techniques for multi-word queries seems

like a promising direction for further research.

2.5 Text-Based Information Retrieval

We have so far hinted several times at the importance (and difficulty) of text-based information retrieval.
Clearly, it plays a key role in web search. It also turns out that some of the core techniques in information
retrieval use ideas similar to the eigenvector-based ones we discussed for HITS and PageRank.

The most näıve search strategies for text-based information retrieval would just return pages that contain
the query term(s). There are two problems with this approach: synonyms (different words having the same
meaning) and polysemy (the same word having more than one meaning). Synonyms may lead the search
engine to miss relevant pages, because the exact query terms may not appear in all relevant pages. Polysemy
may lead the search engine to return irrelevant pages; the pages may contain the search term, but in a
different context and with a different meaning than the user intended.

Consider the following table. There are 6 pages, and 6 words occurring on the pages. Page 1 contains
words 1, 2, and 3, and so on. Imagine searching these pages for word 3. A näıve search engine would simply
return pages 1, 2, and 4, because these pages all contain the query word. However, we might argue that
page 3 is also relevant: while it does not contain the exact query term, it is very similar to pages 1 and 2
that do contain the query term. Similarly, page 4 may not be considered (as) relevant: while it does contain
the query word, it is very similar to pages 5 and 6 that do not contain the query word.

Word 1 2 3 4 5 6
Page 1 x x x

2 x x x
3 x x
4 x x x x
5 x x x
6 x x x

To put these observations on a more rigorous and general footing, we can use techniques from Spectral
Analysis of Data [30], which is also known as Latent Semantic Analysis [127] in the Information Retrieval
community. We consider the table as a matrix, where the cells with an ‘x’ are 1, and the cells without an
‘x’ are 0. This matrix is called the term-document matrix.

In general, this matrix can be used for representing a variety of data sets, where rows index objects in the
data set, columns index attributes of those objects, and the [i, j] entry of the matrix represents the value of
the jth attribute in the ith object. Some examples of interest are where both rows and columns refer to web
sites and the [i, j] entry indicates that site i has a link to the site j; another is that rows index individuals,
columns index products, and the [i, j] entry indicates whether individual i is interested in, or has previously
purchased, product j.

The main tool in extracting the latent structure from the matrix A is the singular-value decomposition
(see, e.g., [219]):

Lemma 2.5 Let A be an m × n matrix (e.g., document-term matrix). Then, A can be written as A =
U ·Σ · V ⊺, where U is an m× k orthonormal matrix, V is an n× k orthonormal matrix (k = rank(A)), and

Σ =








σ1 0 0 0
0 σ2 0 0

0 0
. . . 0

0 0 0 σk
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is a k × k diagonal matrix with σ1 ≥ σ2 ≥ · · · ≥ σk > 0. This is called the singular value decomposition
(SVD) of A, and the σi are called the singular values.

Let us look more closely at the entries of A. We can write the entry ai,j =
∑k

ℓ=1 ui,ℓ · σℓ · vj,ℓ. We can
consider each ℓ = 1, . . . , k to be a “concept”. Then, we can interpret ui,ℓ as “how much is page i about
concept ℓ”, and vj,ℓ as “how much does word j belong in concept ℓ”, and σℓ as the “importance” of concept
ℓ. Note that in representing A in this way, we are making the implicit assumption that concepts behave
linearly: the frequency with which a word occurs on a page is the sum over all concepts, and there are no
superlinear amplifications, or sublinear reductions.

Row i of U can be seen as a k-dimensional description of page i. Concept ℓ = 1, . . . , k corresponds to a
column of U (or a column of V ), so the k-dimensional description of i expresses it in terms of the concepts.
Notice that the same column in U and V correspond to the same concept. Also, notice that since U and V
are orthonormal, concepts are orthogonal.

Following our intuition, we would expect “similar” pages to have similar concept vectors (again, this is
predicated on the assumption that concepts behave linearly). We can then measure the similarity of two
pages by comparing their concept vectors. If there is a small angle between the vectors (or a large inner
product), then the two pages are about the same (or very similar) concepts. However, up to this point, we
are still simply using all the data in the matrix A: merely rephrasing it in terms of the SVD does not yet
give improved search results.

The important issue which we wanted to address was that the entries of the term-document matrix were
not derived from an ideal generation process materializing the concepts in the form of terms. Rather, real
matrices have “errors”. More formally, if the world were about k ≪ min(m,n) concepts, then an “ideal
world” matrix would have rank k. In the real world, web pages do not conform to our ideal concepts.
People write web pages, and their individual tendencies and writing styles vary. This will cause A to have
rank (almost) min(n,m). The concepts ℓ = k + 1, . . . ,min(n,m) are “error-correcting” concepts explaining
peculiarities of A. Hence, to get at the “true” contents of pages, we would like to prune out the entries
derived from those concepts.

How do we do this? First, we determine the “right” k. Having computed the SVD A = U · Σ · V ⊺, we
“blank out” all concepts for ℓ > k, by defining

Σk =















σ1 0 · · · 0

0
. . . 0

0 σk 0
...

... 0 0
. . .

0 · · · 0















and Ak = U ·Σk ·V ⊺. In effect, that gets rid of all concepts for ℓ > k, and thus only retains Uk = [u1 u2 · · · uk]
and Vk = [v1 v2 · · · vk]. (The ui and vi are the columns of U and V , respectively.) The resulting matrix
Ak is still an m × n matrix, but it now has rank k. The following lemma (see, e.g., [219]) shows that it
approximates A well.

Lemma 2.6 The matrix Ak is the best rank-k approximation to A: it minimizes ‖A−B‖2 over matrices B
of rank k, where ‖A−B‖2 = max‖x‖2=1 ‖(A−B) · x‖2.

Given a document-term matrix A and a query q, we would like to find the pages in A that are most
relevant to q. First, we compute Ak (for some choice of k). We consider the space Rk as the “concept space”,
into which we can map both words and pages based on their rows in U and V . Specifically, each page i is
identified with the ith row of Uk, and each word j with the jth row of Vk. To find pages relevant to the
query, we simply output the pages closest to q in concept space.
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How do we choose a good k? A good k is one with σk ≫ σk+1. If no such k exists, then A cannot be
approximated well with low rank, although we will still want to choose some k — it just does not come with
good guarantees. In the end, choosing the right k is somewhat of a heuristic.

The result of this approach is that we can (hopefully) extract meaningful concepts, and thus identify two
pages as similar, and relevant to a query, even if the terms occurring in them are quite different. Conversely,
even if a search term occurs in a document, we may be able to filter it out as irrelevant if other terms force
it to lie far away in concept space from the point at which our query is located.

Similar ideas can be applied to several other scenarios:

Collaborative Filtering (or Recommendation Systems), i.e., the reconstruction of the missing data
items. Finding similarities between users (again, in some “concept space”) lets us predict which
unseen items a user might like.

Web site ranking.

Shopping Predictions.

Singular-value decomposition has found similar applications in a number of domains. In different fields,
it (or close variants) is often also called Factor Analysis, Latent Semantic Analysis, or Principal Component
Analysis.

2.6 Further Reading

Two surveys by Bianchini et al. [51] and by Langville and Meyer [270] provide in-depth discussions of many
of the mathematical, algorithmic, and technological challenges involved in link-based search engines. The
survey by Langville and Meyer has meanwhile been expanded into a comprehensive book [271].

Some of the technical infrastructure underlying successful search engines is described in [46, 181]. The
focus in this chapter, on the other hand, is on link-based inferences about relevance and content, and more
specifically spectral methods in this context.

A good, though somewhat outdated, overview of spectral techniques in link-based web search is given
by Borodin et al. [62, 63], Among the many suggested changes or improvements in HITS and PageRank are
the following: SALSA [277] performs a random walk on the co-citation graph, but normalizes probabilities.
Thus, high-degree hubs divide their hub weight among the authorities they link to, rather than giving full
hub weight to each.

An idea similar to PageRank was around the same time proposed by Marchiori [288], building on previous
work by Frisse [175] for singly authored hypertext corpora. The relevance of i is its own content, plus a
weighted sum of the contents of pages reachable from i. The weights decrease exponentially, and if page i has
multiple outgoing edges, the assumption is that they will be visited in the order maximizing the relevance
of i. A similar idea is used by Boyan et al. [64], who also aggregate relevance scores of pointed-to pages
with geometrically decreasing weights. In addition, [64] proposes taking into account user feedback to train
better retrieval functions and learn the weights for different features. Using clickthrough data (information
on which pages were or were not clicked by the searcher) was pursued much more extensively subsequently
by Joachims et al., for example [231, 345].

The idea of using eigenvalues as measures of “importance”, “authority”, or “status” long precedes HITS
and PageRank. Katz [239] proposes, and Bonacich [59] elaborates on, an approach similar to PageRank
to measure social status in a social network: the status of v is the number of paths from other nodes to
v, with path weights exponentially decreasing in the length of the path. This is similar to giving a node
a weight derived from the (discounted) sum of weights of its neighbors. Hubbell [220] uses an essentially
mathematically equivalent idea to derive a matrix measuring how strongly pairs of nodes are connected.
This matrix is then used to identify “cliques” as densely connected subsets of nodes (differing from the
mathematical definition of a clique). Pinski and Narin [339] use a technique very similar to PageRank to
measure the importance or influence of scientific publications.
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Finding authoritative pages on particular topics is also called topic distillation. Many heuristics have
been proposed to avoid topic drift (which happens when a majority of the pages in the focused subgraph
are not exactly matching the query) and undue influence of individual nodes. In addition to the two papers
discussed above [48, 84], many others propose different heuristics. For instance, Chakrabarti et al. [86]
suggest analyzing pages at a more fine-grained level of individual document objects of the page.

In Sections 2.2 and 2.3, as part of our analysis of HITS and PageRank, we also discussed convergence
speeds, and remarked that it depends crucially on the spectral gap, the difference between the two largest
eigenvalues. By introducing the random jump with probability ǫ, PageRank ensures that the spectral gap is
small, and the Markov Chain converges quickly. An experimental study of convergence speeds of PageRank
computations is performed by Arasu et al. [21]. They find that PageRank converges faster on the graph of
hosts than of pages, and that the Gauss-Seidel method for computing eigenvectors converges faster than the
Power Iteration. The convergence speed of PageRank-like computations has received a lot of attention in
the numerical analysis community. However, as observed by McSherry [292], performing computations on
the right block structure of matrices and reusing values appropriately are sufficient to run a full PageRank
computation on an ordinary laptop. At this point, the technological challenges of computing PageRank
values (offline) can therefore be considered solved.

A large spectral gap has a second advantage beyond fast convergence: the principal eigenvector does not
change much when the matrix is perturbed slightly, e.g., when links are added or deleted, or when rounding
errors occur during the computation. In this sense, PageRank is more stable than HITS, a fact pointed out
by Ng et al. [330]. Based on this observation, in subsequent work [331], they suggest augmenting HITS by
a random jump with probability ǫ as well. Alternatively, one can consider the top k eigenvectors, up to a
point where the eigenvalues drop significantly in magnitude. Such an eigenspace would be more stable. For
an in-depth discussion of the effects of perturbations on matrix computations, see [191, 372].

In order to analyze formally the empirically observed performance of LSI and related methods, one needs
to describe a model of the underlying “ground truth”, which is usually a randomized model for generating
page content. In this context, Papadimitriou et al. [334] were the first to propose a model under which
LSI provably performs well: basically, their model posited that different topics define distributions over
terms, and pages are drawn from a distribution of topics. If there were few topics with sufficiently distinct
signatures, LSI can recover the latent linear structure.

Similar approaches were applied in the context of web search, where generational models also include the
links. For instance, a model of Cohn and Chang [109], based on a similar idea of Hoffman [216] for term-
document scenarios, assumes that links are generated probabilistically with topic-dependent probabilities.
From the sites that a page links to, a maximum likelihood estimation then tries to infer the actual topics.
Cohn and Hofmann [110] extend this model to include both terms within the page and links. Achlioptas et
al. [4] take this approach yet one step further: for each page, an (unknown) low-dimensional vector describes
to what extent the page is a hub and an authority on each of k topics. Text on a page is generated according
to distributions parametrized by the topics, and linking probability depend on the authority weights of the
target and the hub weights of the source of the link. The algorithm then uses an appropriate SVD to infer
the low-dimensional vectors for pages.

The linearity constraint implicit in the use of SVD techniques has been recognized by the community. As
a result, standard PCA has been extended to Kernel PCA (see, e.g., [362]). The idea is that the standard
inner product (by which one implicitly assumes entries of the matrix to be computed) can be replaced by
different notions of inner products. The Kernel of Kernel PCA techniques provides such a notion. Using
these techniques requires knowing what inner product is appropriate for the problem at hand.

Implicit in essentially all of the work described in this chapter is the assumption that pages which are
“close” in terms of number of hops on the web should be for the most part “similar” in terms of content or
topic. Davison [121] and Menczer [295] explicitly test this hypothesis and mostly find it to be true.

To ensure the assumption that links express some notion of endorsement, it is important to deal with
nepotistic links and link spamming. Nepotistic links include navigational aids as well as link spam. Several
papers attempt to automatically identify such links. Davison [120] uses machine learning techniques to
identify decision tree rules for recognizing nepotistic links from examples. The work of Bharat and Henzinger
[48] also implicitly discounts nepotistic links. Zhang et al. [407] argue that the PageRanks of nodes with
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large numbers of nepotistic links are particularly sensitive to the reset parameter ǫ in PageRank, and can
heuristically be identified by varying ǫ.

Despite the intuitive mathematical justification of the search algorithms presented here, the ultimate
judgment is the relevance of the results returned. Naturally, in this context, the success of search engines
like Google or Yahoo! constitutes some amount of verification. A principled experiment was attempted by
Amento et al. [15], who asked 40 human users for the most authoritative documents, and then compared
with the results of search algorithms, as well as various features. They found that link-based analysis yields
good results overall, but surprisingly, merely the number of pages co-hosted with the given page is a very
good predictor as well.
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Chapter 3

Community Structure and Clusters in
Graphs

In this chapter, we turn to the problem of identifying communities from link information. A community is
defined informally as a cohesive set of nodes, in the sense that the node set has “many” links within, and
“few” links connecting it to other nodes. Of course, “many” and “few” are still not very clearly defined
terms, and we will see below how different instantiations of these concepts will lead to different objectives.

But first, let us turn to the question of why we are interested in identifying community structure in
networks. The most important reason is that community structure may reveal useful information about the
network. In a network of friendships, we may identify a large groups of tightly knit friends. In a terrorist
network, with edges representing phone calls or other interactions, we may identify a cell. In a graph such as
the WWW, we might discover communities of pages pertaining to the same specialized subject. (Here, we
would be using the implicit assumption of homophily : that pages on similar topics are more likely to link to
each other.) For another example, many biologists believe that if a set of proteins contains many pairwise
interactions, then these proteins are often involved in some specific common function. In summary, the most
important benefit of identifying communities based on links is the functional or content predictions one can
obtain from the structure.

Two side benefits may not be as readily apparent. Identifying high-level community structure may permit
studying a network at a more appropriate level of detail. This could include replacing communities with
one or few meta-nodes, and studying the network at the level of those meta-nodes. Or one could zoom in
on one particular community, disregarding other parts of the network. For instance, Dill et al. [135] found
empirically that the WWW graph exhibits a lot of self-similarity: within communities defined based on
common topics or other sufficiently homophilous criteria, degree distributions and other statistics closely
resembled those of the entire web graph. A fairly detailed discussion of these and other motivations can be
found, for instance, in Newman’s paper [325].

A further application of community identification is the following: often, social scientists are particularly
interested in links that cross between communities. Granovetter [199] calls such links weak ties. The
particular importance of weak ties is that they provide individuals with much more “fresh” information than
strong ties to their good friends, presumably because the close friends share the same social circles, and
therefore do not have as much novel information. Granovetter [199] reports on data showing that weak ties
were much more instrumental than strong ties in helping individuals find jobs. Further corroborating the
importance of weak ties in connecting social networks was an experiment analyzing a high-school friendship
network. The graph representing only the strong ties, where each person is linked only to their two best
friends, contains many small, isolated communities. On the other hand, including links to the top eight
friends (which will include weaker ties) results in a graph with a giant connected component, and only a few
smaller clusters.

The importance of links crossing between different communities has meanwhile been reiterated and
stressed in many other papers. Most notably, Burt (e.g., [78, 79]) advances a theory of structural holes,
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arguing that the existence of distinct communities tends to imply entrepreneurial opportunities for individ-
uals or companies bridging those communities.

In order to pose questions about weak links and structural holes mathematically, and analyze models for
their formation or function, it is first necessary to identify communities as such. This would also allow us
to formalize the problem of identifying weak links or structural holes.

For the remainder of this chapter, we will use the following notation.

Definition 3.1 Let G = (V,E) be a graph.

1. e(S, T ) = E ∩ (S × T ) denotes the set of edges with exactly one endpoint in S and one in T . e(S) =
e(S, S) is the set of edges with both endpoints in S.

2. We use dS(v) = |e({v}, S)| to denote the degree of v within the set S, i.e., number of edges between v
and nodes in S.

3. The edge density of a node-set S is defined as |e(S)|
|S| .

In exploring the spectrum of different definitions of the term “community”, there are several parameters
along which we can distinguish definitions:

1. Can nodes be in multiple communities? Does each node have to be in at least one community? If these
questions are answered “No” and “Yes”, respectively, then we are seeking a partition of the nodes.
As such, the problem of identifying community structure shares a lot of overlap with the problem of
clustering, and we will explore several objective functions in Sections 3.5 and 3.6.

2. If the answers are “Yes” and “No” instead, then we are looking to identify individual, possibly over-
lapping communities. These will be “unusually dense” sets of nodes. Here, an interesting distinction
is whether we want to include nodes which have overall high degree, or focus on nodes which have
“most” of their edges within a set. This distinction will give rise to different definitions in Sections 3.1
and 3.2.

3. If we follow the reasoning about hubs and authorities of Section 2.2, we would suspect that in the
web graph, communities could be identified by dense bipartite cores of hubs and authorities. Heuristic
approaches based on these ideas are discussed in Section 3.3.

3.1 Dense Subgraphs

Perhaps the simplest and most “obvious” definition of a community is a dense subgraph, i.e., a subgraph
with large edge density in the sense of Definition 3.1. If we want to find the best community, that would be
the subgraph with largest density.

Problem 1 In an arbitrary graph G, find the densest subgraph S, i.e., the set S maximizing |e(S)|
|S| .

We begin with the decision version of the problem: Given a constant α, is there a subgraph S with
|e(S)|
|S| ≥ α? This constraint can be re-written as:

|e(S)| − α|S| ≥ 0. (3.1)

Each internal edge of S contributes 2 to the total degree in S, and each edge leaving S contributes 1, so
the number of internal edges |e(S)| in S is |e(S)| = 1

2 (
∑

v∈S d(v)− |e(S, S)|). Substituting this in Equation
(3.1) gives us

∑

v∈S

d(v)− |e(S, S)| − 2α|S| ≥ 0, (3.2)
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or, equivalently,

∑

v∈V

d(v)

︸ ︷︷ ︸

2|E|

− (
∑

v∈S

d(v) + |e(S, S)|+ 2α|S|)

︸ ︷︷ ︸

=:β(S)

≥ 0. (3.3)

As 2|E| is a constant (independent of S), this constraint is satisfiable iff it is satisfied by the set S with
minimum β(S). To find such a set, we formulate a mincut problem as follows. Consider the graph G′ with
V ′ = V ∪{s, t}, where s is connected to all vertices v with an edge of capacity d(v), and t is connected to all
vertices in V with an edge of capacity 2α. The cost of the cut (S + s, S + t) in G′ is exactly β(S). Thus, if
the minimum s-t cut (S + s, S + t) of G′ satisfies the constraint in Equation (3.3), then S is a set of density
at least α. If not, then no such set exists. The minimum s-t cut can of course be computed with any of the
standard Mincut algorithms (see, e.g., [257]).

Of course, our real goal was to find the maximum value of α for which a set S of density α exists.
We could accomplish this with a binary search over values of α. A more efficient way uses the parametric
max-flow algorithm of Gallo, Grigoriadis and Tarjan [178] to compute minimum s-t cuts for all values of α
in one computation. Since this is a fairly general and useful technique, we state the main result here as a
theorem:

Theorem 3.2 (Parametric Maximum Flow [178]) Let α be a real-valued parameter, and G = (V,E) a
graph with non-negative edge capacities ce which can depend on α in the following way:

1. Capacities of edges out of s are non-decreasing in α.

2. Capacities of edges into t are non-increasing in α.

3. Capacities of edges not incident with s or t are constant.

Then, the maximum flow and minimum cut for all values of α can be computed simultaneously with one
invocation of a modified Goldberg-Tarjan algorithm [187], in time O(n2m). Furthermore, the minimum cuts
(Sα, Sα) are nested, in the sense that Sα ⊆ Sα′ whenever α ≤ α′.

Remark 3.3 While we gave an algorithm for the problem of finding the overall densest subgraph, the
problem becomes significantly more difficult once we restrict the size of the subgraph. For instance, finding
the densest subgraph of exactly (or at most) k nodes is an NP-hard problem, as can be seen easily by
reducing from the k-clique problem, setting the density to be k − 1.

The densest k-subgraph problem has been studied in several papers [26, 50, 161, 164]. The current best
approximation ratio is O(n1/4+ǫ) (in time O(n1/ǫ) for any ǫ > 0 [50].

Only recently did Khot [249] rule out the existence of a PTAS for the densest k-subgraph problem: unless
the Unique Games Conjecture [248] is violated, there is some α > 1 such that no α-approximation to the
densest subgraph can be found in polynomial time. Obviously, the upper and lower bounds are far from
matching, and closing this gap is an interesting open question.

A straightforward, but quite useful, generalization of the Densest Subgraph problem specifies a set X of
vertices that must be included in the set S.

Problem 2 Given a graph G, find the densest subgraph S containing a specific vertex set X (i.e., S maxi-

mizes |e(S)|
|S| over all sets S ⊇ X).

This allows us to find out what the nodes in X “have in common”, by identifying a dense subgraph S
containing them, and then inspecting the nodes in the dense subgraph for their attributes.

This generalization can be solved quite easily, simply by giving all edges from s to vertices v ∈ X a
capacity of ∞. This will ensure that all nodes in X are on the s-side of the cut, and the rest of the analysis
stays the same.
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3.1.1 A 1/2-Approximation

In some real-world graphs, such as the WWW or the graph of all friendships among people in the US, the
running time of O(mn2) from Theorem 3.2 is still prohibitively large. Thus, we are interested in faster
algorithms, preferably running in linear or near-linear time. As it is not known how to compute minimum
s-t cuts much faster, we will have to settle for an approximation algorithm. The following greedy algorithm
was first analyzed by Charikar [89]. We present it immediately for the generalized version (Problem 2) of
the Densest Subgraph Problem.

Algorithm 1 A Greedy 1
2 -Approximation Algorithm for finding dense subgraphs

Let Gn ← G .
for k = n downto |X|+ 1 do

Let v /∈ X be the lowest degree node in Gk \X.
Let Gk−1 ← Gk \ {v}.

Output the densest subgraph among Gn, . . . , G|X|.

Claim 3.4 Algorithm 1 is a 1
2 -approximation.

Proof. Let S ⊇ X be the densest subgraph. If our algorithm outputs S, then it is clearly optimal. If not,
then at some point, we must have deleted a node v ∈ S. Let Gk be the graph right before the first v ∈ S
was removed. Because S is optimal, removing v from it would only make it worse, so

|e(S)|
|S| ≥ |e(S−v)|

|S|−1 ≥ |e(S)|−dS(v)
|S|−1 .

Multiplying through with |S|(|S| − 1) and rearranging gives us d(v) ≥ |e(S)|
|S| .

Because Gk is a supergraph of S, the degree of v in Gk must be at least as large as in S, so dGk
(v) ≥

dS(v) ≥ |e(S)|
|S| . The algorithm chose v because it had minimum degree, so we know that for each u ∈ Gk \X,

we have dGk
(u) ≥ dGk

(v) ≥ |e(S)|
|S| . We thus obtain the following bound on the density of the graph Gk:

|e(Gk)|
|Gk|

≥
∑

u∈S dS(u) +
∑

u∈Gk\S
|e(S)|
|S|

2|Gk|

=
2|e(S)|+ |Gk \ S| |e(S)|

|S|
2|Gk|

≥ |e(S)|
|S| ·

|S|+ |Gk \ S|
2|Gk|

=
|e(S)|
2|S| .

The graph that the algorithm outputs is certainly no worse than Gk, as Gk was available as a potential
solution. Hence, the algorithm is a 1

2 -approximation.

3.2 Strong Communities

In the previous section, we defined a community as a dense subgraph. That means that the group of nodes
overall has many edges. One feature of this definition is that it will “usually” favor the inclusion of nodes
with overall high degree. For instance, in terms of communities in the WWW, we would expect that for any
sufficiently large set S of nodes, the most commonly linked to other nodes would be yahoo.com, google.com,
or cnn.com, even if the nodes in S do share a much more narrow feature. In terms of our introductory
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discussion, we were requiring many edges within the community, but not few edges connecting it to other
nodes. For some applications, one could argue that communities should also be well separated from other
nodes, in the sense that each node has most of its links inside the set S. This leads us to the following
definition, slightly generalizing one by Flake et al. [166].

Definition 3.5 Let G be a graph, and α ∈ [0, 1]. A set S ⊆ G is called a strong α-community in G iff
dS(v) ≥ αd(v) for all nodes v ∈ S.

This definition captures that each individual should “belong” to the community. The value α = 1
2 has a

particularly natural interpretation, in that it requires that each node in S have at least as many edges inside
S as to nodes outside S. It is also the case considered in [166]. If we omit the value of α, we assume α = 1

2 .
The larger α, the more “tightly knit” the community is. So the best communities are the ones with large

α. However, this leads to the problem that the whole graph is the “best” community, because all of its edges
are within the selected set (itself), making it a 1-community.

The entire graph is not a very interesting community. We are more interested in discovering significantly
smaller communities which nevertheless have many edges inside. As an extension, we may also wish to force
the inclusion of one or more nodes, and find the best community containing them.

Unfortunately, finding the smallest (or even approximately smallest to within a factor of c log(n) for some
constant c) community is NP-hard, with or without the inclusion of specific sets.

Theorem 3.6 1. It is NP-complete to decide whether a given graph G has an α-community of size at
most k.

2. Unless P=NP, the size of the smallest α-community cannot be approximated within a factor of O(c log n)
in polynomial time, for some c.

3. The same results hold if we require to find a community of a specified vertex v.

Proof. Membership in NP is obvious. The NP-hardness will be implied by the approximation hardness,
so we will only prove the second part of the theorem (and show the few simple extensions necessary to prove
the third). To avoid notational clutter, we assume here that α = 1

2 .
We reduce from the Set Cover problem. Let X = {x1, . . . , xn} be the set of elements, and S1, . . . , Sm ⊆

X the sets. The goal is to find a minimum number of sets Si whose union covers X. To do so, we construct
an undirected and unweighted graph G. Let Xi for an element xi denote the set of all indices j such that
xi ∈ Sj .

We start with a large clique B of 4mn2 + 1 bulk nodes. These will be used solely to increase the degree
of other nodes and force them to include many of their more “legitimate” neighbors — we don’t even need
to give them individual names.

We also have a set F of n forcer nodes, each of which is connected to n distinct bulk nodes. Forcer nodes
are not connected among each other.

The other nodes are more important, and fall into two classes: first, there is an element node vi for each
element xi, and the vi form a clique. In addition, each vi is connected to 2n+ 1− |Xi| distinct bulk nodes,
and to each of the n forcer nodes.

For each set Sj , there are 2n+ 1 set nodes sj,a, which are connected to form a clique (for fixed j). Each
sj,a for 2 ≤ a ≤ 2n+1 is connected to 2n distinct bulk nodes, whereas sj,1 is connected to 2n+ |Sj | distinct
bulk nodes. Finally, there is an edge between sj,1 and vi whenever xi ∈ Sj in the Set Cover instance.

In the resulting graph, each element node vi has degree exactly 4n, each set node sj,a for a ≥ 2 has degree
4n, the nodes sj,1 have degree 4n + 2|Sj |, forcer nodes have degree 2n, and the bulk nodes have degree at
least 4mn2.

Given a set cover of size k, we can obtain a community as follows: Let C consist of all element nodes vi,
all forcer nodes, and all set nodes sj,a for which Sj is in the set cover. The size of C is k(2n+ 1) + 2n. To
verify that it is a community, notice that in the induced subgraph of C, each node sj,a for a ≥ 2 has degree
2n, and node sj,1 has degree 2n + |Sj |. Each node vi has degree at least 2n, because C contains all other
vi′ , all forcer nodes, and a node sj,1 for some set Sj containing xi.
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Conversely, consider a community C of size at most k(2n+1)+ 2n for some k < n (solutions with k ≥ n
are of course uninteresting for set cover approximations). Because it is quite small, C cannot contain any
bulk nodes — if it contained any one of them, it would have to contain at least 2mn2 > m(2n+ 1) + 2n of
them to be a community.

Now, if C contains any set node sj,a, it must contain all of the sj,a′ for that particular j in order to be a
community (otherwise, the degree requirement for sj,a would be violated, as none of its adjacent bulk nodes
are included). By the size constraint, C contains the set node clique for at most k sets Sj , and we will prove
that these sets Sj form a set cover.

In order to satisfy the degree requirement, all of the vi adjacent to sj,1 ∈ C must be included — in
particular, any community C (of size at most k(2n+ 1) + 2n) contains at least one element node vi.

In order for the element node to have its required degree of 2n without bulk nodes, C must contain a
forcer node, for C can contain at most n element nodes and k ≤ n − 1 nodes sj,1. But in a community C
with a forcer node and without bulk nodes, all element nodes vi must be included to meet the forcer node’s
degree requirement. Thus, any community C without bulk nodes contains all element nodes.

Now, to meet an element node vi’s degree requirement of 2n without including bulk nodes, at least one
set node adjacent to vi must be included in C, for all forcer and element nodes would only yield degree
2n− 1. Hence, the sets Sj for which sj,1 ∈ C indeed form a set cover of size at most k.

This completes the proof that the above reduction is approximation preserving, thus showing the inap-
proximability of the community problem, because Set Cover is known to be inapproximable within O(c log n)
for some c (unless P=NP) [160, 349].

When we ask about communities including a particular node v, we can use exactly the same reduction,
and fix v to be a forcer node — the result is going to be the same, since forcer nodes were just shown to be
included in all sufficiently small communities.

Given that even approximating the smallest α-community within O(log n) is NP-hard, we will look at
heuristics: approaches that may often work in practice, even if they give us no guarantees. Let (S, S) be a
minimum s-t cut in G. Then, S is almost a 1

2 -community because each v ∈ S \ {s, t} has at least as many

edges inside S as crossing (S, S): otherwise moving v to the other side of the cut would make the cut cheaper.
If this also held for s and t, then (S, S) would be a 1

2 -community.
If we are looking for communities including a given node s, we can use the above heuristic approach to

compute the minimum s-t cut for all t in n min-cut computations. Then, we simply take the best cut found
this way.

If we are looking for just communities, without specifying a node s, then we can try all (s, t) pairs (Θ(n2)
min-cut computations). We can reduce that number of computations to O(n) using Gomory/Hu trees [194].
The idea is that all min-cuts can be “encoded” in a tree.

Theorem 3.7 (Gomory-Hu Trees [194]) Let G = (V,E) be a graph. For all node pairs i, j ∈ V , let fij
be the maximum flow (min-cut) between i and j. Let G′ be the complete graph on V with edge costs fij. Let
T be a maximum spanning tree of G′.

For each i, j ∈ V , let Pij denote the (unique) i-j path in T . Then, the tree T has the property that
fij = mine∈Pij

fe for all i, j. If e is the edge attaining the minimum, then the two connected components of
T \ {e} define a minimum i-j cut in the original graph G.

Proof. We will prove that fij = mine∈Pij
fe by contradiction, ruling out inequality in both directions.

If fij > mine∈Pij
fe, then inserting (i, j) into T and removing the edge e ∈ Pij minimizing fe would

create a more expensive tree T ′. This contradicts the assumption that T was a maximum spanning tree of
G′. So fij ≤ mine∈Pij

fe.

For the other direction, let (S, S) be an i-j cut of capacity fij . Because Pij is an i-j path, it must cross
this cut, i.e., there is an edge e = (u, v) ∈ Pij with u ∈ S, v ∈ S. So (S, S) is also a u-v cut, and thus,
fuv ≤ fij . But then, mine∈Pij

fe ≤ fuv ≤ fij , completing the proof.

Therefore, the s-t cuts for all s, t ∈ V can be compactly represented. An interesting additional con-
sequence is that there are only n − 1 different min-cuts (and associated min-cut values) for the n(n − 1)
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different pairs of nodes. Gomory and Hu [194] also show how to compute T from G using only n−1 min-cut
computations. Using the approach of first computing T , we can thus find the communities for all nodes with
only O(n) min-cut computations.

3.2.1 Other values of α

If we want to find α-communities for α 6= 1
2 , we need to adapt the approach. The idea is to adapt some

degrees so that dS(v) ≥ αdG(v) holds in the original graph if and only if d′S(v) ≥ 1
2d

′
G(v) holds in the new

graph. We do this by adding a source and sink, and connecting them to each node v in an effort to “balance”
the sides of the inequality.

If α < 1
2 , each node v has an edge to the source with capacity (1 − 2α)d(v); otherwise, each node v is

connected to the sink with capacity (2α − 1)d(v). Nodes x whose inclusion (or exclusion) is required are
connected to s (resp., t) with infinite capacity. (Notice that if no nodes are connected with infinite capacity,
then the minimum s-t cut will always just separate s or t from the rest of the graph, corresponding to our
above intuition that the entire graph is the best community.) The algorithm then just looks for the minimum
s-t cut in the resulting graph G′.

Claim 3.8 This approach will produce “almost α-communities,” in the sense that all nodes except those
whose inclusion was forced will meet the community constraint.

Proof. Here, we give the proof for the case that α ≥ 1
2 — the proof for α < 1

2 is symmetric.
As in the argument for plain min-cuts in a graph, the fact that a node u (without infinite-capacity edges)

is on the s-side as opposed to the t-side implies that dS(u) ≥ dS(u)+(2α−1)d(u), or dS(u)+d(u)−dS(u) ≥
2αd(u). Now, because d(u) = dS(u) + dS(u), this becomes 2dS(u) ≥ 2αd(u), or dS(u)

d(u) ≥ α.

The sets found by this approach can violate the community constraint at the nodes whose inclusion was
forced. Notice that this may happen even when there are communities including/excluding specific nodes,
i.e., the fact that the algorithm did not find a community does not mean that none exists.

Flake at al. [166] propose another min-cut based heuristic, which makes more of an effort to avoid the
“entire graph” problem described above. For a parameter δ that will be varied, all nodes other than a
specified node s to be included are connected to a new sink t with capacity δ. We then vary the parameter δ,
and look for the minimum s-t cut. The cuts found this way can then be inspected manually, and interesting
ones extracted. (Notice that they can be found with one parametric max-flow computation [178], as described
in Theorem 3.2.)

For δ = 0, the minimum cut is (V, {t}). On the other hand, for very large δ, the minimum cut is
({s}, V ∪ {t} \ {s}). If along the way, some δ yields a non-trivial solution, that is an “almost community,”
in that it violates the constraint only at the node s.

3.3 Bipartite Subgraphs

The previous views of communities, both of which essentially looked for dense subgraphs, were based on
the implicit assumption that nodes within a community are “likely” to link to each other. This homophily
often applies in social settings. However, as we argued in Section 2.2, it is a more questionable assumption
in competitive settings such as the WWW. For instance, within the “community” of car manufacturers, we
would expect relatively few or no links between the most prominent members. At the time, the solution
was to look (implicitly) for links in the co-citation graph, or look for bipartite graph structures of hubs and
authorities.

Kumar et al. [266] propose the same approach for community identification, and argue that large and
dense bipartite graphs are the “signature” of communities in the WWW.

Ideally, we would like to enumerate “all” such signatures, and expand them to communities. However,
the complexity of doing so would be prohibitive. If nothing else, deciding the presence of large complete
bipartite graphs is NP-hard, and as hard to approximate as the Clique problem itself. However, in this
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context, it is interesting to note that if the given graph is dense enough (i.e., contains enough edges), it
always has a large complete bipartite subgraph.

Lemma 3.9 If a bipartite graph has Ω(b1/3n5/3) edges, it contains a K3,b, i.e., a complete bipartite subgraph
with 3 nodes on one side, and b nodes on the other.

Proof. For each node v on the right side, we write δ(v) for the set of its neighbors, and d(v) = |δ(v)| for
its degree. Each node v is labeled with each 3-element subset T of δ(v) (i.e., with all T ⊆ δ(v), |T | = 3).

Notice that each node thus has many labels, namely
(
d(v)
3

)
. Taken over all nodes on the right side, the total

number of labels is
∑

v

(
d(v)
3

)
. We assumed in the statement of the lemma that

∑

v d(v) = Ω(b1/3n5/3). The

total number of labels is minimized when all d(v) are equal, i.e., d(v) = Ω(b1/3n2/3). Even then, the number
of labels is

∑

v

(
d(v)
3

)
= n

(
Ω(b1/3n2/3)

3

)
= nΩ(bn2) = Ω(bn3). (3.4)

But the total number of distinct labels is only
(
n
3

)
= O(n3). Hence, by the Pigeonhole Principle, some label

must appear at least b times. The b nodes on the right side sharing the label, and the three nodes on the
left side who form the parts of the label, together form a K3,b.

By considering a-tuples instead of triples for labels, we can obtain the generalization that any bipartite
graph with Ω(b1/an2−1/a) edges contains a Ka,b.

While it is interesting to know that sufficiently dense graphs will contain a Ka,b, it does not necessarily
help us in finding one, in particular if the graph is not dense. For large a and b, the problem is NP-hard
in general, but we may still be interested in speeding up the search for smaller, and practically important,
values, such as finding K3,6 graphs. By brute force (trying all 9-tuples of nodes), this would take Θ(n9) steps.
A first and simple improvement is given by realizing that we only need to look at triples of nodes on one
side. Given nodes v1, v2, v3, we can take the intersection of their neighborhoods

⋂

i δ(vi). If the intersection
contains at least b elements, then a K3,b has been found, else those three nodes cannot be part of a K3,b.
This reduces the running time to Θ(n4).

The ideas underlying this improvement can be extended further. Obviously, any node of indegree less
than 3 can be pruned, and similarly for outdegrees less than b. Once nodes have been pruned, we can iterate,
as the degree of other nodes may have been reduced. In addition, if a node reaches indegree exactly 3 (or
outdegree exactly b), it can be verified easily if it and all its neighbors form a K3,b, after which they can
either be reported (and pruned), or just pruned. These heuristics, while not useful in a worst-case scenario,
help a lot in practice. They were reported, along with other heuristics, by Kumar et al. [266], and used to
identify several 10,000 communities in the web graph.

Remark 3.10 Finding large complete bipartite graphs can be likened to finding dense areas of a 0-1 matrix,
a task known as association rule mining in the data mining community [6]. A common approach there (see,
e.g., [7]) is to take simple rules, and combine them into larger rules. The idea is that any subgraph of a
larger complete (or dense) graph must itself be complete (or dense). Hence, looking only at combinations of
small dense graphs rules out a lot of unnecessary attempts. By starting from K1,1 graphs, extending them
to K1,2 and K2,1, then to K2,2, K3,1, and K1,3, etc., we make sure to only look at relevant data, which leads
to a lot of speedup in practice (though again no theoretical guarantees in the case of dense graphs).

3.3.1 Other eigenvalues

If we follow the intuition of hubs and authorities a little further, we arrive at an alternate approach to
identify community structure. Rather than looking merely for dense bipartite subgraphs (or large complete
bipartite graphs), we could instead look at other eigenvectors of the adjacency matrix (or cocitation matrix).
Nodes with large positive or negative entries in those eigenvectors (hub or authority weights) could then be
considered as the cores of communities [184].
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To gain some intuition for why this might make sense, consider the following adjacency (or cocitation)
matrix B.

B =









1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1









The largest eigenvalues of B are λ1 = 3 and λ2 = 2, and the corresponding eigenvectors are e1 =
(0, 0, 1, 1, 1), and e2 = (1, 1, 0, 0, 0), respectively. The sub-communities found are the bottom three nodes (a
K3,3), and the top two nodes (a K2,2).

Here is the intuitive reason why this works: consider a vector e which is an eigenvector for a large
eigenvalue λ. Let i be some index such that ei is “large”. The i

th row of B ·e is
∑

j bijej , and must be equal
to λei because of the eigenvector property. Because both λ and ei were assumed to be “large,” the sum
is large, and most of the contribution to the sum must come from the entries j for which ej is large. But
then, the corresponding bij must also be large. In other words, the bij values are “fairly large” among the
pairs (i, j) such that the ei are large. But this just means that the nodes i with large ei values are relatively
densely connected in B, which is exactly what we are looking for in a community.

While the above provides some intuition, there are also quite a few things that can be said formally
about this approach. One is the following lemma, which is a well-known basic fact about random walks on
undirected graphs.

Lemma 3.11 Let G be an undirected graph, and define the matrix A as aij =
1

d(j) if (i, j) is an edge of G,

and aij = 0 otherwise. (A corresponds exactly to the transition probabilities for a random walk on G.)
Then, the largest eigenvalue of A is 1, and its multiplicity k is the number of connected components of G.

Furthermore, the k (right) eigenvectors corresponding to the eigenvalue 1 identify the connected components
of G.

Remark 3.12 We are deliberately vague about “identifying the connected components.” If there is more
than one component, then the eigenvectors are not unique: any set of k orthonormal vectors spanning that
space is possible. We can say the following, however: there is a set of k orthonormal eigenvectors such that
the ith eigenvector has non-zero entries exactly for the nodes in the ith connected component. Furthermore,
given any set of k eigenvectors, it is fairly easy to obtain instead a set with this “identifying” property.

Of course, there are easier ways to compute connected components, and furthermore, connected compo-
nents are not necessarily the most exciting type of communities. However, Lemma 3.11 at least motivates
the approach of Gibson et al. [184] described above.

3.4 Personalized PageRank and Communities

Much more can be said about eigenvectors of different matrices derived from the adjacency matrix of a
graph, and the sense in which they identify communities. In particular, eigenvectors are useful in identifying
sets with small “surface-to-volume” ratio, i.e., many edges inside the set, and few edges outside.

More precisely, let e(S, S) denote the number1 of edges between S and S. The volume of a node set S
is the sum of degrees of all its nodes, i.e., vol(S) =

∑

v∈S dv = 2e(S, S) + e(S, S). The conductance of S is
then

Φ(S) :=
e(S, S)

min(vol(S), vol(S))
. (3.5)

1In previous chapters, we used the same notation for the set of edges between S and S.
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The conductance of the graph G is then Φ(G) := minS⊂V (G) Φ(S). A closely related quantity is the edge

expansion e(S,S)

min(|S|,|S|) , which we will revisit in more detail in Section 7.2.

Since low-conductance sets can be construed as natural “communities,” there has been a lot of work
on finding them, and relating them with spectral properties. The best-known result relating the concepts
is Cheeger’s Inequality. To state it, we define the normalized Laplacian matrix of G to be LG = I −
D−1/2AD−1/2, where I is the n×n identity matrix, D = diag(d1, d2, . . . , dn) is the diagonal matrix of node
degrees, and A is the adjacency matrix of G. Let 0 = λ1(G) ≤ λ2(G) ≤ λ3(G) ≤ · · · ≤ λn(G) ≤ 2 be the
eigenvalues of LG. Then, Cheeger’s Inequality states the following:

Theorem 3.13 (Cheeger’s Inequality [14, 101]) Φ2(G)/2 ≤ λ2 ≤ 2Φ(G).

Rearranged, Cheeger’s Inequality bounds the conductance of a graph as
√
2λ2 ≥ Φ(G) ≥ λ2/2. The

proof of Theorem 3.13 is constructive: it shows how to find a low-conductance cut (S, S) from the Fiedler
vector, i.e., the eigenvector corresponding to λ2. More recent work (e.g., [273, 268]) gives generalizations and
sharpenings of Cheeger’s Inequality incorporating higher eigenvalues λ3, λ4, . . ..

3.4.1 Local Communities

While the algorithms implicit in Theorem 3.13 and its generalizations can find communities of provably low
conductance, these communities are necessarily “global” in nature: they give a good partition of the graph
into two (or a few) sets. There are two major drawbacks to this approach:

For a graph at the scale of the WWW or the social network of all or most humans, a partitioning into
a constant number of sets is likely not of much use. Instead, given a handful of individuals, we would
typically be interested in finding their “tightly knit” community, comprising only a very small portion
of the graph.

For graphs such as the WWW or a large social network, even linear time in n (let alone polynomial
time with larger exponent) may be too slow, in particular when the community we are seeking is itself
small.

The second concern suggests the notion of local computation [371]: the running time should be (nearly)
linear not in the size of the input, but in the size of the output. Applied to community detection in huge
graphs, this means that if the community we seek is small, then the running time should be much smaller
than the size of the graph.

A valuable technique for local computation of communities was pioneered by Spielman and Teng [371].
Let S be the node set whose community we would like to find. The idea is to start random walks in S
and truncate them after a suitable (small) number of steps. The nodes that are reached in this way will
be “close” and “well-connected” to S. Of course, in the limit (as the number of steps goes to infinity), the
distribution over nodes reached by a random walk will be independent of the start node. But after a small
number of steps, the random walk will be heavily biased towards the nodes “around” S. This is particularly
true if there is a community of low conductance around S, since the random walk is unlikely to cross one of
the few edges leaving S.

Explicitly truncating the random walk after some number of steps suffers from the sharp cutoff. Perhaps
a more natural approach is for the random walk to return to S probabilistically in each step: for each step,
with probability ǫ, the random walk returns to a (uniformly) random node in S; with probability 1 − ǫ, it
takes a normal random walk step. Notice that this is exactly the behavior of topic-sensitive (also called
personalized) PageRank from Section 2.4, when the restart vector f is uniform over S. This suggests that
with a suitable choice of ǫ, the nodes with large topic-sensitive PageRank values should form a reasonable
community around S.

In fact, this is not just a useful heuristic, but an approach that comes with provable guarantees, as shown
by Andersen, Chung, and Lang [17, 16]. We will explore a simplified analysis of some of the key insights
from [17, 16].
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For the purpose of the discussion here, we assume that S consists of just a single node v̂, so the reset
vector is f = ev̂ (the vector with 1 in coordinate v̂, and 0 in all other coordinates). Recall from Section 2.4
that the personalized PageRank vector pv̂ satisfies

pv̂ = (1− ǫ) ·M · pv̂ + ǫ · f , (3.6)

where M is the transition matrix of the random walk on the web graph G. For notational convenience, and
because v̂ will be mostly clear from the context, we will omit v̂ from the notation unless it is needed for
clarity.

In order to use personalized PageRank values for local community detection, two issues must be addressed:

1. The entries of p must be computed efficiently. When truncating the random walk deterministically
after some number k of steps, it is clear that the support (set of non-zero entries) of p is at most dkmax.
But p will in general have full support. One of the main contributions of [17] was to show how to
compute a good approximation of p that has small support, and perform this computation in time
depending only on the support size of the approximation, not on the graph’s size n.

For the results in [17, 16] on how to actually detect communities, it then becomes crucial to account
for the approximation in p, which is the source of a large share of the technical contribution. For our
simplified exposition here, we will assume that we have access to the precise values of p, though we
will occasionally consider the difficulties that arise from approximations to p.

2. We need to establish formally how the p relate to the community structure. This is the focus of the
analysis here.

As we saw in Chapter 2, the stationary probabilities of a simple random walk are proportional to the de-
grees (for undirected graphs); thus, the degrees will also be an important part of p, obscuring the community
structure we are seeking. Therefore, for most of the analysis, we are interested in the normalized vector q,
defined as qi = pi/di. For simplicity of notation, we assume that nodes are sorted, so that q1 ≥ q2 ≥ · · · ≥ qn.
We write Sj := {1, . . . , j}.

The key lemma of the analysis, intuitively capturing the connection between eigenvector entries and
community structure, is the following:

Lemma 3.14 (Sharp Drop Lemma) If there is a sharp drop in qi values from index j to index k, then
Sj has small conductance. More precisely, consider any j, and some β ∈ (0, 1). If for all k > j, (at least)
one of the following two holds:

vol(Sk) < (1 + β) · vol(Sj),

qk < qj − ǫ
β·vol(Sj)

,

then e(Sj , Sj) ≤ 2β · vol(Sj).

Proof. The high-level intuition of the proof has been outlined before: if a set Sj has large conductance,
then a lot of probability mass will traverse the cut from Sj to its complement with each step of the random
walk, so the qi values should equalize quickly. The contrapositive states that if there is a sharp drop, then
the conductance must be small.

Fix any j and β ∈ (0, 1). We distinguish two cases.

1. If Sj is large, in the sense that vol(Sj) >
1

1+β · vol(G), then almost all edges are inside Sj , so few edges

can cross from Sj to Sj . More precisely,

e(Sj , Sj) ≤ vol(G) · (1− 1

1 + β
) < β · vol(Sj).

So for large Sj , the conclusion of the lemma always holds.
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2. In the case vol(Sj) ≤ 1
1+β ·vol(G), let k be the index such that vol(Sk−1) ≤ (1+β) ·vol(Sj) ≤ vol(Sk),

so going from k − 1 to k is where the volume reaches (1 + β) times that of Sj . In other words, k is
the first index such that Sk is “sufficiently bigger” than Sj . Assume that e(Sj , Sj) > 2β · vol(Sj). We
will show that there is no sharp drop at j for any k′ ≤ k − 1. Because the volume of those Sk′ is also
close to the volume of Sj , this shows that the antecedent of the lemma is false, and thus completes the
proof of the contrapositive.

Sk

Sk

Sk−1

Sj

v̂

Figure 3.1: An illustration of the nested sets Si.

First, we lower-bound the edges between Sj and Sk−1, shown schematically in Figure 3.1 as edges
between the dark red and (light or dark) blue regions. Because e(Sj , Sj) > 2β vol(Sj), we can bound

e(Sj , Sk−1) ≥ e(Sj , Sj)− vol(Sk−1 \ Sj) > 2β · vol(Sj)− β vol(Sj) = β · vol(Sj).

Next, we want to relate the qi values with the number of crossing edges. For any set S, the probability
mass inside it after one step of the random walk is the probability that was inside S before the extra
step, plus the probability mass that entered S, minus the probability mass that left S. So we can write

∑

u∈S

(M · p)u =
∑

u∈S

pu +
∑

(u,v)∈(S,S)

1

dv
· pv −

∑

(u,v)∈(S,S)

1

du
· pu =

∑

u∈S

pu −
∑

(u,v)∈(S,S)

(qu − qv). (3.7)

Rearranging Equation (3.6), we get that M ·p = 1
1−ǫ ·(p−ǫf). Substituting this value, and considering

only sets S ∋ v̂, we can rewrite

∑

u∈S

(M · p)u =
1

1− ǫ

∑

u∈S

(pu − ǫfu) ≥
∑

u∈S

(pu − ǫfu) =
∑

u∈S

pu − ǫ. (3.8)

Choosing S = Sj , and equating Equations (3.7) and (3.8), we obtain that
∑

(u,v)∈(Sj ,Sj)
(qu − qv) ≤ ǫ.

By dropping the edges from Sj to Sk−1 \ Sj from the sum, we can now bound

∑

(u,v)∈(Sj ,Sj)

(qu − qv) ≥
∑

(u,v)∈(Sj ,Sk−1)

(qu − qv) ≥ e(Sj , Sk−1) · (qj − qk) ≥ β · vol(Sj) · (qj − qk).
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The middle inequality used that qj is the largest q value of any node in Sj , and that qk is the smallest
q value of any node outside of Sk−1.

Solving the inequality now gives that qj − qk ≤ ǫ
β·vol(Sj)

. Thus, we have shown that if the set Sj has

large conductance, then from Sj to Sk, there is no steep drop, nor does Sk have roughly the same
volume as Sj . This completes the proof.

Lemma 3.14 shows that we can read off low-conductance cuts from sharp drops in qi values. However,
for this to be valuable, we still have to show that cuts of sharp drops actually exist, or at least to examine
under which conditions they do. The approach here is algorithmic — we will consider a natural candidate
algorithm for finding a suitable set Sj , and understand roughly under what conditions it succeeds.

We start with an index j0 and corresponding set Sj0 . Then, for each i, let ji+1 be smallest such that
vol(Sji+1

) ≥ (1 + β) · vol(Sji). That way, if there is a sharp drop from ji to ji+1, the first condition holds
by definition for ji < k < ji+1, and Lemma 3.14 immediately implies that Sji has small conductance. The
following lemma shows the implications of finding no sharp drop in this sequence:

Lemma 3.15 If the sequence j0, j1, . . . contains no sharp drop, then qjk ≥ qj0 − ǫ(1+β)
β2·vol(Sj0

) .

Proof. By definition of the sequence, vol(Sji) ≥ (1 + β)i vol(Sj0), and because no sharp drop was found
in the sequence, qji+1

≥ qji − ǫ
β·vol(Sji

) for all i. Substituting both, we obtain that

qjk ≥ qj0 −
ǫ

β · vol(Sj0)
·

k∑

i=0

(1 + β)−i = qj0 −
ǫ

β · vol(Sj0)
· 1 + β

β
= qj0 −

ǫ(1 + β)

β2 · vol(Sj0)
.

Thus, if no low-conductance cut is found, then all qj values are “almost as large” as qj0 . Next, we show
that there is a choice that ensures a large qj0 .

Lemma 3.16 For any probability vector p (in particular: the PageRank vector), there exists an index i with
qi ≥ 1

H2m
· 1
vol(Si)

. (Here, m is the number of edges, and Hj is the jth Harmonic number.)

Proof. Suppose that no such i existed. Then

1 =
∑

i

pi =
∑

i

qidi <
1

H2m
·
∑

i

di
vol(Si)

.

By writing di =
∑di

j=1 1, we can now write this expression as

1

H2m
·
∑

i

di∑

j=1

1

vol(Si)
≤ 1

H2m
·
∑

i

di∑

j=1

1

vol(Si)− j + 1
=

1

H2m
·
2m∑

j=1

1

j
= 1,

a contradiction.

We will only outline the rest of the algorithmic and analysis ideas. We would like to find a set S ∋ v̂
with Φ(S) ≤ β, and of sufficiently large volume vol(S) ≥ x. In order for a simple heuristic to have a chance,
we assume that not only does such a set S exist, but in fact, there is a set of sufficiently large volume with

significantly smaller conductance. Define the restart probability to be ǫ = β2

C·H2m
for a suitable constant C.

Let j0 be the largest index i satisfying qi ≥ 1
H2m

· 1
vol(Si)

; the existence of such a j0 is guaranteed by

Lemma 3.16. Then, if no sharp drop is found, all the qji in the sequence outlined above satisfy

qji ≥ qj0 −
1 + β

C ·H2m · vol(Sj0)
≥ 1

H2m
· 1

vol(Sj0)
− 1 + β

C ·H2m · vol(Sj0)
≥ C ′ · 1

H2m · vol(Sj0)
,

for a suitable constant C ′.
We say that the vertex v is ǫ-central to a set S if the vector pv defined by Equation (3.6) satisfies

∑

u/∈S pv,u ≤ 2Φ(S)
ǫ . In other words, v is ǫ-central to S if the resetting random walk for v is unlikely to leave

S. The following lemma (whose proof we omit) says that central vertices make up a large fraction of sets:
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Lemma 3.17 (Probability Capturing Lemma) For any set S and any ǫ, let Sǫ ⊆ S be the set of ǫ-
central vertices of S (with respect to the random walk with reset probability ǫ). Then, vol(Sǫ) ≥ 1

2 vol(S).

Based on Lemma 3.17, we cannot be assured that the vertex v̂ we chose will find the good community S,
but for a lot of other choices of the start vertex, we would have started with a vertex central to S. Now, the
argument basically says that if the target volume x is large enough (in particular, x ≥ vol(Sj0)), then the
sequence of indices ji will not include a lot of nodes outside the “ideal” community (i.e., nodes from S), not
contain much more than half of the volume of G, and recover something close to S of conductance at most
3β. Some of the complexity arises due to the error analysis because the personalized PageRank vectors are
only computed approximately.

3.5 Modularity

We now move away from the problem of identifying just one community, and instead try to partition the graph
into a collection of disjoint communities. In this sense, the problem of finding communities is synonymous to
the problem of partitioning a graph, or of clustering a graph. Naturally, there are many different objectives
describing the quality of such a partitioning. Here, we will focus on a measure called modularity proposed
by Newman et al. [328, 324].

To motivate the idea behind the modularity measure, we return to an observation made earlier in the
context of α-communities: high-degree nodes, by definition, tend to contribute more edges to communities.
Thus, if we include many high-degree nodes in a community together, we expect to capture a lot of the edges.
On the other hand, if we isolate low-degree nodes, we expect not to lose many edges. This really does not tell
us much about communities, but only recovers known information about the degree distribution. The idea
of the modularity measure is to capture how many more edges a partitioning explains beyond what could be
predicted merely from the degree distribution. To capture what we mean by “from the degree distribution”,
we look at how many more edges are inside communities than would be in a random graph with the same
degree distribution.

Formally, consider a graph G = (V,E), and a partition P = {S1, . . . , Sk} of that graph. If the partition
“explains” the communities in the graph, then just the partition, without any information about the edges,
should allow us to “reconstruct” the edges relatively well. How well is captured by modularity. The actual
number of edges inside Si is exactly |e(Si)|. If all we knew about G was its degree distribution, then the
expected number of such edges can be calculated as follows: we assume that the graph is a uniformly random
multi-graph of the same degree distribution, i.e., we allow self-loops and parallel edges.

Consider a vertex v ∈ Si of degree d(v). For any vertex u, the probability that a given edge e of v has

u as its other endpoint is d(u)
2m−1 , where m is the total number of edges. The reason is that with m edges,

there are 2m edge endpoints, and for any one edge, it might choose any one of these endpoints (except the
ones that’s already used up). By linearity of expectation, the expected number of edges between u and

v 6= u is therefore d(u)d(v)
2m−1 . The expected number of self-loops of v is d(v)(d(v)−1)

2m−1 , because one of the edge
endpoints of v is already used up for the other end of the edge. Summing up over all pairs u, v in Si now

gives us that the expected number of edges with both endpoints inside Si is
1
2
d(Si)(d(Si)−1)

2m−1 , where we write

d(Si) =
∑

v∈Si
d(v). The factor of 1

2 here arises because each edge is considered twice, once for each of its
endpoints. Ignoring the two −1 terms, and summing up over all of the partitions gives us that the expected
number of edges inside partitions is (roughly) 1

4m

∑

i d(Si)
2.

We define the modularity q(P) of a partition P as the difference between the actual number of edges
inside clusters, and the expected such number under a uniformly random multigraph, normalized to a scale
of [−1, 1] by dividing out the total number of edges. Thus, the definition is

q(P) =
1

m
·
(
∑

i

|e(Si)| −
1

4m
d(Si)

2

)

. (3.9)

Thus, we can now formally state the algorithm question as finding a partitioning P maximizing q(P).
Notice that the number k of clusters is not specified; avoiding the need to pre-specify the number of clusters
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is one of the advantages of the modularity objective. Of course, if desired, one can also consider a version in
which the number of clusters is actually given.

Little is known about algorithms with provable guarantees for the problem of finding a modularity-
maximizing partitioning. Only recently did Brandes et al. prove that the problem is NP-hard [70]. So far, no
algorithms with provable guarantees are known. Many heuristics have been proposed, based on bottom-up
greedy aggregation [324, 104], identifying edges which lie on many shortest paths [328], extremal optimization
[144], simulated annealing [202], and rounding of linear and semi-definite programs [5].

One of the more interesting heuristics by Newman [325, 326] also uses the top eigenvector of a matrix

termed the modularity matrix. The key observation is the following: if we define au,v = 1− d(u)d(v)
2m if there

is an edge between u and v, and au,v = −d(u)d(v)
2m otherwise, then Equation 3.9, the definition of modularity,

can be rewritten as 1
4m

∑

i

∑

u,v∈Si
au,v. Now imagine that we only want a partition into two communities,

and use an indicator variable yv = ±1 for each node v, depending on whether v is in one or the other
partition. Then, the objective can be written as 1

4m

∑

u,v au,v(1 + yuyv). Because
∑

u,v au,v = 0, we can
rewrite the modularity as

1

4m
y⊺Ay, (3.10)

where A is the matrix of all au,v entries, and y is a vector of ±1 entries describing the partition.

While finding such a vector y is NP-hard, it ceases to be hard if we remove the restriction that all entries
be ±1. In fact, the vector maximizing y⊺Ay is exactly the top eigenvector of A. Thus, it appears to be a
good heuristic to first find the top eigenvector of the modularity matrix A, and then round the entries of
y. Different ways suggest themselves: the most obvious is to put all nodes with positive y entries in one
partition, and all nodes with negative y entries in the other. But instead, one can choose any threshold τ ,
and put all nodes with yv ≥ τ in one partition, and yv ≤ τ in the other. In fact, it probably makes sense to
try all possible τ values for this.

Akin to considering other eigenvectors in Section 3.3.1, Newman [325, 326] also suggests looking at the
next eigenvectors, and the partitionings defined by them. Again, heuristically, this may lead to the discovery
of interesting community structure.

Since its introduction by Newman, modularity has become a very popular measure of community struc-
ture, in particular in the physics and biology communities. However, there are also important questions to
ask. For instance, at what modularity measure is an observed community structure really meaningful?

Clauset et al. [104] suggest that the community structure identified by an algorithm is significant in the
context of a graph when the modularity is above about 0.3. On the other hand, Guimerà et al. [203] argue that
those values will be obtained merely by random fluctuations in G(n, p) random graphs. While for any given
community partitioning, the expected number of edges inside it under a random graph will be (essentially)
equal to the baseline used in the definition of modularity, this does not hold if the community structure
is chosen after the random graph is generated. A more in-depth examination of the idea of “conditioning
on the degree sequence” is performed by Gaertler et al. [176]. They generalize the notion to express the
“significance” of a clustering as the amount of information (edges) it contains compared to any posited
baseline model. A uniform random multi-graph subject to a degree distribution is one particular example,
but far from the only one. Similarly, the objective functions falling into the broad class of “modularity like”
are explored further by Reichardt and Bornholdt as well [350].

3.6 Correlation Clustering

In the previous section, we began considering the problem of community identification as partitioning a
graph. The assumption there was that each edge expresses that two nodes are “more likely” to be in the
same community. In many cases, this is a reasonable assumption. However, in particular in contexts such as
the web (including blogs), we may often find edges that explicitly suggest the two endpoints might not be
in the same community. For instance, in politics or sports, pages will link to other pages with the explicit
goal of deriding the content. This can be frequently identified from anchor text and similar clues. Thus, it
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makes sense to consider a clustering problem where edges are annotated with ‘+’ or ‘-’, expressing whether
the endpoints appear to be similar or dissimilar.

This is a clustering problem called correlation clustering [32]. In the setting described above — each
edge of the graph is annotated with a label of ‘+’ or ‘-’ — the goal is to find a clustering that puts many ’+’
edges inside clusters, and ’-’ edges between clusters. However, these goals may be conflicting, as can be seen
for a triangle with two edges labeled ’+’ and one labeled ’-’. As with the problem of maximizing modularity,
we do not pre-specify the number of clusters, though of course one can also consider the variant where the
target number of clusters is given.

More formally, given the graph G = (V,E) on n vertices, we write +(i, j) if the edge between i and j is
labeled ‘+’ and similarly for −(i, j). The optimization problem can now be expressed in two ways:

Maximize the number of agreements, i.e., the number of ‘+’ edges inside clusters plus the number of
‘-’ edges across clusters. This problem is called MaxAgree.

Minimize the number of disagreements, i.e., the number of ‘+’ edges across clusters plus the number
of ‘-’ edges inside clusters. This problem is called MinDisAgree.

Clearly, the solution optimizing the first criterion is the same as the one optimizing the second. However,
we will see that the two objective functions differ with respect with how well they can be approximated.

The correlation clustering problem is NP-hard, even for the complete graph (where each possible edge
exists, and is labeled either ‘+’ or ‘-’). Hence, we are interested here in approximation algorithms.

3.6.1 A Simple Algorithm for Maximizing Agreements

For the maximization version, we may choose to go just after one of the two types of edges. By putting all
nodes in one cluster, we get all the ‘+’ edges right — by putting each node in its own cluster, we get all the
‘-’ edges right. This suggests the following algorithm [32]:

If the number of ‘+’ edges in the graph is larger than the number of ‘-’ edges, then put everything
into one cluster, else put every node in its own cluster.

Claim 3.18 This is a 1
2 -approximation.

Proof. If the graph has m edges, then the optimal solution can have at most m agreements. Our algorithm
produces a clustering that has at least m

2 agreements. Hence, it is a 1
2 -approximation.

One consequence is that in a complete graph with assignments of edges, there must exist a clustering

with at least n(n−1)
4 agreements (half of the total number of edges in the complete graph).

3.6.2 Improving the Approximation Factor

While the algorithm is a 1
2 -approximation, it is hardly satisfactory in a practical sense. We don’t need a new

clustering model or algorithm if all it does is lump everything together, or put each node in its own cluster.
So naturally, we want to know if the approximation guarantee can be improved.

In [32], the authors develop a PTAS (Polynomial Time Approximation Scheme) for the MaxAgree

problem in a complete graph. That is, they present a class of algorithms, parametrized with some ǫ > 0,
such that the algorithm with parameter ǫ is a (1− ǫ) approximation with running time O(n2eO(1/ǫ)). While
this grows exponentially in ǫ, for any fixed ǫ, the algorithm takes polynomial time.

3.6.3 A 4-Approximation for MinDisAgree in complete graphs

Given that MaxAgree is (at least theoretically) settled for complete graphs, we next look at the minimiza-
tion version. [90] gives a 4-approximation based on rounding the solution to a Linear Program.
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The idea of the Linear Program is to start with an Integer Program. For each pair i, j of nodes, we have
a variable xij which is 1 if they are in different clusters, and 0 otherwise. To make these variables consistent,
we have to require that if i and j are in the same cluster, and j and k are in the same cluster, so are i and
k. This can be expressed by saying that xik ≤ xij + xjk. Subject to this consistency requirement, we want
to minimize the number of ‘+’ edges between clusters, plus the number of ‘-’ edges within clusters. Thus,
we obtain the following IP.

Minimize
∑

+(ij) xij +
∑

−(ij)(1− xij)

subject to xik ≤ xij + xjk for all i, j, k
xij ∈ {0, 1} for all i, j

(3.11)

As we know, solving IPs is itself NP-hard, so as usual, we want to relax the IP to a linear program, by
replacing the last constraint with the constraint that 0 ≤ xij ≤ 1 for all i, j. This LP can now be solved;
however, the output will be fractional values xij . Our goal is to somehow convert these fractional values into
integer ones (“round” the solution) in such a way that the objective function value of the rounded solution
is not much more than that of the fractional solution. As the latter is a lower bound on the optimum integer
solution, we will derive an approximation guarantee.

After obtaining the fractional xij values (in polynomial) time, we need some intuition for dealing with
them. We notice that the main constraint is just the triangle inequality. Hence, if we define xii := 0 for all
i, the xij exactly form a metric space. In other words, the optimum solution is the metric minimizing the
objective function. Nodes that are close in the metric space can be considered as being “almost in the same
cluster”, while distant nodes are “quite separated”. So we likely want our clusters to consist of nodes that
are mutually close. At the same time, we need to choose the boundaries carefully, so as not to cut too many
edges. It turns out that the following Algorithm 2 from [90] carefully trades off between the different types
of costs:

Algorithm 2 LP-Rounding

1: Start with a set S containing all the nodes.
2: while S 6= ∅ do
3: Select an arbitrary node u ∈ S.
4: Let T := {i ∈ S | xui ≤ 1

2} \ {u}
5: if the average distance from u to the vertices in T is at least 1

4 then
6: Let C := {u} (a singleton cluster).
7: else
8: Let C := T ∪ {u}.
9: Remove all of C from S.

Theorem 3.19 Algorithm 2 is a 4-approximation.

Proof. The idea of the proof is to compare the mistakes that are incurred with the above algorithm against
the LP cost, by showing that whenever a cluster is formed, the number of mistakes (‘+’ edges across clusters
plus ‘-’ edges inside clusters) is at most four times the corresponding LP cost of the corresponding edges.

First, by simple applications of the triangle inequality and reverse triangle inequality, we obtain the
following relationships between the distances (which will be used later).

Lemma 3.20 For any nodes i, j, u:

The cost of a ‘+’ edge (i, j) incurred by the LP is at least xij ≥ xuj − xui.

The cost of a ‘-’ edge (i, j) incurred by the LP is at least max(0, 1− xuj − xui).
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We will show the claim for each cluster separately. So let u be a cluster center of the cluster C. We can
then sort the other nodes by increasing distance from u, i.e., whenever xui < xuj , we say that i < j (ties are
thus broken arbitrarily).

We distinguish between the two cases when a singleton cluster is created, or when the cluster includes T .

1. Singleton cluster {u}:
This case occurs when the average distance from u to the vertices in T is at least 1

4 . Our algorithm
then pays for all the ‘+’ edges incident with u. For each such ‘+’ edge whose other endpoint is not in
T , the LP pays at least 1

2 . And for the edges whose other endpoint is in T , the LP pays at least

∑

i∈T,+(ij) xui +
∑

i∈T,−(ij)(1− xui) ≥ ∑

i∈T xui ≥ |T |
4 .

Therefore, for a singleton cluster, our algorithm pays at most four times the LP cost.

2. Non-singleton clusters

In this case, the algorithm could be making two kinds of mistakes:

Allowing ‘-’ edges inside C.

Cutting ‘+’ edges between C and S \ C.

We first analyze the costs of negative edge mistakes. If we have a ‘-’ edge (i, j) such that both i and j
are close to u, then they must be close to each other, so the fractional solution must also pay a lot for
this edge. Specifically, if xuj and xui are both at most 3

8 , then from the second part of Lemma 3.20,
xij is at least 1− xuj − xui ≥ 1

4 . So the cost for any such edge incurred by our algorithm is at most 4
times that of the LP solution.

For the remaining ‘-’ edges, we will not be able to come up with a bound on an edge-by-edge basis.
Indeed, if two nodes i and j are at distance 1

2 each from u, they may be at distance 1 from each other,
so the fractional solution incurs no cost. Instead, we will compare the costs node by node: specifically,
we will show that for any node j, the number of ‘-’ edges between it and nodes i that are closer to u
than itself is at most four times the corresponding cost of the LP solution.

So we fix a node j with xuj ∈ ( 38 ,
1
2 ]. The total cost of edges (i, j) with i < j (both ‘+’ and ‘-’ edges)

that the LP solution incurs is

∑

i<j,+(ij)

xij +
∑

i<j,−(ij)

(1− xij) ≥
∑

i<j,+(ij)

(xuj − xui) +
∑

i<j,−(ij)

(1− xuj − xui).

By writing pj for the number of ‘+’ edges (i, j) with i < j, and nj for the number of ‘-’ edges (i, j)
with i < j, we can rewrite this as

pjxuj + nj(1− xuj)−
∑

i<j

xui.

Because the algorithm chose not to have a singleton cluster, the average distance of all nodes to u is
at most 1

4 . The last sum
∑

i<j xui only leaves out some subset of nodes furthest away from u, so the

average distance of those nodes is also at most 1
4 . Hence, the last sum is at most 1

4 (pj + nj), and the
entire LP cost is at least

pjxuj + nj(1− xuj)−
pj + nj

4
= pj(xuj −

1

4
) + nj(1− xuj −

1

4
).
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The number of negative edge mistakes the algorithm will make is at most nj . On the other hand,
because 3

8 ≤ xuj ≤ 1
2 , the LP cost is at least

pj

8 +
nj

4 . Thus, the sum of edge costs incurred by the
algorithm is at most four times that of the LP. Since this holds for any cluster, and we only account
for the LP cost of any edge once, we have shown that the algorithm is a 4-approximation for ‘-’ edges.

Next, we turn our attention to ‘+’ edges. A ‘+’ edge (i, j) only contributes to the cost of our solution
if one endpoint, say, i, is included in the cluster that is formed, while the other, j, is not. So we are
dealing with the case that xui ≤ 1

2 and xuj ≥ 1
2 . If in fact, xuj ≥ 3

4 , then xij ≥ 1
4 by the triangle

inequality, so the cost paid by our algorithm is within a factor of 4 of the LP-cost for any such edge.
Hence, we now focus on the case of nodes j with xuj ∈ ( 12 ,

3
4 ). We compare the number of ‘+’ edges

cut by our algorithm to the total LP cost of all edges (‘+’ and ‘-’) between j and nodes in the cluster
C.

By the triangle inequality (captured in Lemma 3.20), writing pj and nj for the number of ‘+’ resp. ‘-’
edges between j and nodes from C, we obtain that

LPj =
∑

i∈C,+(ij)

xij +
∑

i∈C,−(ij)

(1− xij)

≥
∑

i∈C,+(ij)

(xuj − xui) +
∑

i∈C,−(ij)

(1− xui − xuj)

= pjxuj + nj(1− xuj)−
∑

i∈C

xui.

Because the algorithm didn’t form a singleton cluster, the average distance of nodes in C from u is at
most 1

4 , so LPj is bounded below by pjxuj + nj(1− xuj)− pj+nj

4 . But 3
4 ≥ xuj ≥ 1

2 , so

LPj ≥ pj

2 +
nj

4 −
pj+nj

4 =
pj

4 .

As the algorithm cuts pj ‘+’ edges, the total cost of edges cut by the algorithm is at most four times
the LP-cost. By summing this over all nodes j and all clusters formed, we obtain that the algorithm is a
4-approximation.

We mentioned above that, while the optimal solution for the minimization and maximization version
is the same, the approximation guarantees differ. For the minimization version on complete graphs, the
algorithm from [90] we just analyzed gives a 4-approximation. On the other hand, [90] also shows that the
problem is APX-hard, i.e., there is some constant such that the minimization version on complete graphs
cannot be approximated to within better than that constant unless P=NP. On arbitrary graphs, the best
known approximation is O(log n); however, it is open whether the problem can be approximated to within
a constant.

Even though there is a constant-factor approximation for the minimization version on complete graphs,
together with an APX-hardness result, we may wonder what is the best possible constant. We will show that
the LP used above has an integrality gap of 2, so no rounding approach solely based on that LP can yield
an algorithm with a better guarantee. The example is the “wheel” graph, in which all nodes of a k-cycle are
connected to one additional center node with a ‘+’ edge (while all edges of the cycle are labeled ‘-’). Then,
the integral optimal solution puts all of the cycle nodes in different clusters, paying a total of k − 1, while
the fractional optimum assigns xij =

1
2 to all edges between the center and the cycle nodes, paying k

2 . The
ratio approaches 2 as k →∞.

The authors of [90] show that no rounding algorithm based on the same type of “region growing” will
lead to an approximation guarantee of better than 3, and conjecture that in fact, no similar approach will
give a better approximation than the factor of 4 obtained.

For the maximization version, there is a PTAS on complete graphs [32]. For graphs that are not complete,
the problem is APX-hard. However, in this case, it is known how to approximate it to within a constant factor.
The factor of 0.7664 from [32] was improved to an 0.7666 approximation via semi-definite programming by
Swamy [377].
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3.7 Further Reading

Since the topic of community discovery in graphs has attracted so much attention (in particular in physics
and biology), there is a very large literature by now. Several good surveys exists, including ones by Fortunato
and Castellano [167, 169], Danon et al. [118], and Porter et al. [343]. They share a focus on physics-style
heuristics, and are short on surveying important techniques (such as approximation algorithms or rounding
of linear programs) from the computer science literature. Good overviews of some of the basic techniques
common in computer science are given in Part II of the book “Network Analysis” by Brandes and Erlebach
[71] and a survey by Schaeffer [360].

Naturally, the identification of cohesive groups of individuals has long been an important task for so-
ciologists as well. Some of the traditional approaches can be found in classical texts on social networks
by Wasserman and Faust [393] and Scott [364]. An overview of some of the more recent work on group
cohesiveness is given in the article by White and Harary [398].

The definition of Flake et al. [166] is called a strong community because of the stringent condition on each
node. One can instead consider weak communities. In a weak α-community S, we only require that the total
number of edges inside S be at least an α fraction of the sum of degrees of all nodes in S. This definition was
proposed by Radicchi et al. [344], simultaneously with a paper by Hayrapetyan et al. considering the same
motivation and definition [209]. As with the definition by Flake et al., the entire graph is always a weak 1-
community. So again, one could like to find the smallest weak α-communities. Currently, no approximation
algorithm with provable guarantees is known for this problem. On the hardness side, only NP-hardness is
known. Another related definition, due to He et al. [210], is called (α, β)-community: a vertex set S is called
an (α, β)-community if each vertex v ∈ S connects to at least β vertices inside S, while each vertex u /∈ S
connects to at most α < β vertices in S.

Lemma 3.9 is an example of the topics studied in the area of extremal graph theory [58]. Broadly, extremal
graph theory studies the relationships between different graph properties. For instance, in the case of the
lemma, we see that a certain number of edges implies that the graph must have bipartite cores.

Beyond Cheeger’s Inequality and its generalizations, a lot more can be said about the connections between
eigenvalues, eigenvectors, and graph properties. For a more detailed introduction to spectral graph theory,
see for instance [101, 52, 302].

Another interesting justification for using Personalized PageRank vectors in community detection was
recently provided by Kloumann et al. [259]. They consider the Stochastic Blockmodel (SBM) [217], in
which nodes are divided into k disjoint partitions, and for each pair of partitions i, j, a probability θi,j is
specified. For each pair u, v of nodes such that u is in partition i and v is in partition j, there is an edge
independently with probability θi,j . Kloumann et al. [259] show that if edges within partitions are sufficiently
more likely than across partitions, and the θi,j are generally large enough that there are enough edges, then
the Personalized PageRank entries for a careful choice of ǫ allow one to reconstruct the entire partition
containing a given seed set S (assuming that S is entirely contained inside one partition).

More generally, the goal of recovering the blocks of a Stochastic Block Model (or partitions of a Planted
Partition model) has received a lot of attention. In early pioneering work, McSherry [291] showed how to
use suitable singular vectors of matrices to provably reconstruct the block structure when it is sufficiently
pronounced and the graphs are dense enough. A lot of recent work (e.g., [1, 126, 289, 310, 311, 312]) has
focused on the goal of recovering the partitions even when the graphs are sparse, and as the differences in
θi,j values approach a lower bound beyond which reconstruction is provably impossible.

As discussed in Section 3.5, maximizing modularity has become very popular, in particular among physi-
cists. The paper [325] contains a fairly detailed survey of much of the work that has been done on the topic.
Among the more critical papers is one by Fortunato and Barthélemy [168], which proves that modularity has
an intrinsic resolution limit, in the sense that the modularity of a proposed clustering (in a large graph) can
always be improved by merging smaller communities into larger ones. In fact, Fortunato and Barthélemy
show that this is the case for every clustering objective that summarizes the quality of a partitioning in a
single number.

There is a direct analogy between the modularity maximization problem and correlation clustering, as
observed in [5]. Consider again Equation (3.10). There is really no reason why A would have to be restricted
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to be the modularity matrix. For instance, if instead, we made A the matrix with +1 for ‘+’ edges, and -1
for ‘-’ edges, then we measure the difference between correctly and incorrectly classified edges. By adding
|E| and dividing by two, we thus get the number of correctly classified edges, i.e., the MaxAgree objective.
Since |E| is a constant, this does not change optimality of solutions. Indeed, the formulation is the basis of
the approximation algorithm by Swamy [377], who adds the constraint that y2i = 1 for all i, and then uses
semi-definite programming with an appropriate rounding scheme.

One can also apply the same reasoning to the LP (3.11). Instead of having terms xij and 1 − xij in
the objective function for edges labeled ‘+’ resp. ‘-’, we can write

∑

ij aijxij for the modularity matrix
entries aij , under the same constraints. While the objective function now takes a different form, we can still
aim to apply the same kind of rounding techniques. Unfortunately, they do not come with approximation
guarantees any more.

The previous discussion suggests a more general question: given a matrix A, find a ±1 vector y maximiz-
ing y⊺Ay. This would subsume both modularity maximization and correlation clustering. Some recent work
has identified conditions on A under which provable approximation guarantees can be obtained. Nesterov
[318] shows that if A is positive semi-definite, then solving the semi-definite program alluded to above and
rounding appropriately gives a 2/π approximation. Charikar and Wirth [91] give an Ω(1/ log n) approxima-
tion algorithm based on semi-definite programming and rounding, under the assumption that the diagonal
elements of A are all zero. While this is the case for correlation clustering, it does not apply to modularity
maximization.
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Chapter 4

Link-Based Classification

When looking at correlation clustering, we started from the motivation that nodes that have ‘+’ edges
between them are more likely to belong to the same cluster. In a sense, we could then consider the clusters
we formed as communities, sharing perhaps some similarity in topic. If we have an a priori estimate of
the topics that nodes (web pages) are about, we can use a similar approach to correct and refine our
estimates. For instance, if a page about coffee points to a lot of pages about programming, then perhaps we
misinterpreted the meaning of “Java” in one case, and should revise our initial estimate. Hence, we will try
to optimize two conflicting goals: agreements with an a priori estimate, and agreements between nodes with
edges between them.

Essentially the same problem arises frequently in the context of computer vision [68]. The goal there is
to label pixels into classes (classification problem) and assign labels representing these classes as foreground
or background objects (or different colors). Again, the competing constraints are that we don’t want many
disagreements with the a priori labels, but also not between adjacent (physically close) pixels.

4.1 Markov Random Fields and the Optimization Problem

To formalize this intuition, we can think about the following model, first proposed in the context of link-based
text classification by Chakrabarti, Dom, and Indyk [85], and later also studied by Broder, Krauthgamer,
and Mitzenmacher [74]. Our goal is to assign some label f(v) to each node v in the graph. Focus on one
node v, and consider its neighborhood δ(v). (For now, we will ignore the direction of edges.) Suppose that
we knew the (correct) labels f(u) of each neighbor u ∈ δ(v). With this knowledge, a classifier could give us
a conditional probability distribution over the possible labels of v, e.g., by taking text and other content at
node v into account. This is exactly the definition of a Markov Random Field (MRF) (see, e.g., [45, 338]).
Notice that the specification of the distribution at each node v is still exponential in the size of δ(v), but if
nodes have low degree, this allows us to specify probability distributions concisely.

Of course, we do not know the correct labels in neighborhoods of v, either, so what we are really looking
for is a complete labeling maximizing the overall probability, the product over all nodes v of their conditional
probability. As expected, this is still a hard problem; among others, it contains Graph Coloring or
Independent Set as special cases.

We can transform this optimization problem into a more familiar looking one, as described by Kleinberg
and Tardos [256]. First, by the Hammersley-Clifford Theorem [45], the probability can be written as

1

Z
exp(−

∑

C∈C
ΓC(f |C)).

Here, Z is a normalizing constant, C is the collection of all cliques in the graph, and ΓC is a clique potential.
The important thing here is that the clique potentials depend only on the restriction f |C of the labeling to
C, i.e., only on the labels of the nodes in the clique.
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The real observation will not necessarily be drawn from the given Markov Random Field. Instead, we
assume that it was obtained by first drawing a labeling from the Markov Random Field, and then introducing
independent random noise at each node, according to known distributions.

If we further assume that only pairwise interactions matter, then instead of all cliques C, we only need to
look at penalty terms Γe for edges. In principle, these terms could depend in arbitrary ways on the labels of
the edge endpoints. However, it is natural to assume homogeneity : each Γe is of the form we ·Γ. That is, the
type of penalty is the same for all edges; only the weights are different. Combining all of these assumptions,
and using Bayes’ Rules, we obtain the following form for the probability that the true labeling is f , given
that the observed labeling is f ′.

1

γZ

∏

v

Prob[f ′(v) | f(v)] · exp



−
∑

e=(u,v)∈E

weΓe(f(u), f(v))



 .

Here, γ is a constant depending only on f ′, but not on f . The terms in the first product are the probabilities
of observing labels f ′(v) if the true underlying labels are f(v), and are thus given by the description of the
random noise.

By taking logarithms, we see that maximizing the probability is the same as minimizing the objective

∑

v

log
1

Prob[f ′(v) | f(v)] +
∑

e=(u,v)∈E

weΓe(f(u), f(v)).

This motivates the following, somewhat more general, optimization problem: Given a graph G, where
each edge e = (u, v) has weight we representing the cost or strength of the relationship between vertices u
and v, we want to assign labels f(v) ∈ L for all vertices v such that we minimize the assignment cost

∑

v

c(v, f(v)) +
∑

e=(u,v)

we · d(f(u), f(v)). (4.1)

c(v, f(v)) is the cost of choosing label f(v) for node v, which will be a result of deviating from the observed or
otherwise determined label. d represents how “different” the two labels are, and how much penalty therefore
should be assigned to adjacent nodes with these labels. Since d is a measure of dissimilarity, it makes sense
to assume that it is a metric. From now on, we will therefore focus on the metric Markov Random Field
labeling problem.

In fact, for the remainder of this chapter, we will focus on the special case of the uniform labeling problem.
In that case, for two labels a, a′, we have that d(a, a′) = 0 if a = a′, and d(a, a′) = 1 otherwise. Thus, labels
are either identical, or simply different — there are no gradations of “different”. We will discuss the general
problem briefly at the end of the chapter.

Remark 4.1 In the physics literature, this type of Markov Random Field is also called the Ising Model. It
is used to describe the distributions of states of spin systems such as magnets. In those systems, adjacent
atoms tend to have the same orientation of spin in ferro-magnetic states. Depending on the temperature,
the state will be more or less aligned, and physicists try to answer how likely different spin configurations
will be at different temperatures.

4.2 A 2-approximation using LP-rounding

In this section, we will present and analyze a polynomial-time 2-approximation algorithm using LP-rounding.
The algorithm and analysis were given by Kleinberg and Tardos [256]. Recall that we focus on uniform
Markov Random Fields. That is, our goal is to find a labeling f(v) of vertices v minimizing

∑

v

c(v, f(v)) +
∑

e=(u,v),f(u) 6=f(v)

we. (4.2)
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To formulate this problem as an (integer) linear program, we define variables xv,a, which will be equal
to 1 if node v is assigned label a, and equal to 0 otherwise.

Using the xv,a values, we would like to define a variable ye that is equal to 1 if the two endpoints of e
have different labels, and equal to 0 otherwise. To do this, we notice that if the endpoints u and v of e have
the same label, then xv,a − xu,a = 0 for all a. Otherwise, it is 0 for all but two of the a, and equal to 1 and
-1 for the other two. Thus, for e = (u, v),

ye =
1

2

∑

a

|xv,a − xu,a|.

However, this is still no linear constraint, as |xv,a − xu,a| is not a linear function. We will see in a moment
how to deal with this problem. For now, notice that our goal is to minimize

∑

v,a

xv,a · c(v, a) +
∑

e

we · ye. (4.3)

The only constraint is that each node should obtain exactly one label, so
∑

a xv,a = 1 for all v, and each
xv,a ∈ {0, 1}.

To return to the issue of how to express ye via linear constraints, we first write ye = 1
2

∑

a ye,a, where
ye,a = |xv,a − xu,a|. While we cannot directly express this as a linear constraint, we can require that
ye,a ≥ |xv,a − xu,a|, by writing ye,a ≥ xu,a − xv,a and ye,a ≥ xv,a − xu,a for all e = (u, v). But since the
objective is to minimize the objective function (4.3), the optimum solution will never choose ye,a larger than
necessary, so we will indeed have ye,a = |xv,a − xu,a|. In summary, we have derived the following IP for the
metric labeling problem:

Minimize
∑

v,a xv,ac(v, a) +
∑

e we · ye
subject to

∑

a xv,a = 1 for all v
ye =

1
2

∑

a ye,a for all e
ye,a ≥ xv,a − xu,a for all e = (u, v), a
ye,a ≥ xu,a − xv,a for all e = (u, v), a
xv,a ∈ {0, 1} for all v, a.

As usual with LP rounding algorithms, we relax the constraint xv,a ∈ {0, 1} to xv,a ∈ [0, 1], i.e., we
allow the solutions to take on fractional values. Then, we can solve the LP in polynomial time. We will
investigate how to round the solution to obtain a labeling which does not perform much worse than the
fractional optimum. In particular, that will show that it is not much worse than the integral optimum as
well.

For the underlying idea, notice that the xv,a, summed over all a, add up to 1 for each v. Hence, we can
view them as fractions to which v is given label a, or as probabilities of v having label a. A first approach
would label each node v with a with probability xv,a. Notice that we would do very well on the labeling cost
∑

v,a xv,a · c(v, a) this way, as

E [labeling cost of node v] =
∑

a Prob[v ← a] · c(v, a) =
∑

a xv,a · c(v, a),

Here (and later), we denote by v ← a the fact that node v is assigned label a, and use the fact that
Prob[v ← a] = xv,a.

However, this does not ensure that we do well on separation costs, too. In fact, if we make the choices
for different nodes v independently, it can happen that this rounding procedure does very badly. Suppose
that the graph consists of just two vertices, v1 and v2, with a non-zero cost edge between them. There are
two labels a and b, and all vertex labeling costs are c ≡ 0. Then, the fractional solution can choose any
fractional assignment, so long as v1 and v2 have the same fractional share of a. One of the optimal solutions
of the LP, which we may have to round, would thus be assigning all probabilities equal to 1

2 . The LP cost is
then 0. But if v1 and v2 receive different labels, we pay a non-zero separation cost, and thus have infinitely
bad approximation.
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Thus, we need to make more coordinated choices between labels of nodes and their neighbors. Suppose
that we label a node v with the label a. A first stab would be to label all neighbors u of a with xu,a ≥ xv,a

with a as well. But then, u’s label may conflict with that of one of its neighbors when it is labeled later. So
we may also want to require that a be the label with the largest fractional value among u’s labels. But that
does not really solve the problem either. It seems that we may also have to label the neighbors of u, and so
on recursively.

As a result, one thing we can do is that once we pick a node v and assign a to it, we pick xv,a as a
threshold, and assign a to all nodes u having xu,a ≥ xv,a. Then, when a conflict occurs between some such
u and another node w which gets a different label b, at least we know that they didn’t have exactly identical
fractional values.

This motivates the following rounding algorithm, which picks a label a uniformly at random, as well as
a random threshold, and labels all nodes with that particular label if their probability for the chosen label
is above the threshold. This process is repeated until there are no more nodes left to be labeled.

Algorithm 3 LP Rounding algorithm

1: repeat
2: Pick a uniformly random label a ∈ L, and a uniformly random α ∈ [0, 1].
3: Label all v with xv,a ≥ α with a, and remove them.
4: until no more nodes are left

4.2.1 Approximation Guarantee

Theorem 4.2 Algorithm 3 is a 2-approximation.

Proof. We prove the theorem by analyzing the assignment costs and separation costs separately. We show
that for both cases, the cost incurred using the approximation algorithm is within a factor of two of the
optimum fractional solution of the LP, and hence also within the same factor of the integral solution (which
can be no better than the best fractional one). Let k = |L| denote the number of labels.

1. To analyze the assignment cost, we first notice that in any particular iteration, v is labeled a with
probability

xv,a

k . That is because label a is picked with probability 1/k, and conditioned on picking
label a we label v iff the random threshold is at most xv,a.

Because in each iteration, label a is assigned to v with probability proportional to xv,a, the overall
probability of assigning a to v is xv,a. We can thus use the same argument as above to obtain that the
expected labeling cost is

∑

a Prob[v ← a] · c(v, a) =∑a xv,a · c(v, a).

2. To analyze the separation cost, we first notice that we only incur cost wu,v for the edge e = (u, v), when
u and v get different labels. But that can only happen when u, v are labeled in different iterations of
the algorithm. Therefore, there must have been an iteration labeling exactly one of {u, v}. We bound
the probability of that happening.

Given a label a, exactly one of {u, v} is labeled a iff the threshold α ∈ (xu,a, xv,a] (assuming xu,a < xv,a).
So the probability of labeling exactly one of u and v with label a is |xv,a − xu,a|. Summing over all

labels a, the probability of labeling exactly one of {u, v} with any label is
∑

a
|xu,a−xv,a|

k .

For any time t, we let Ft be the event that at least one of {u, v} is labeled in iteration t and Et the event
that exactly one is labeled. We are thus interested in Prob[Et | Ft]. First off, notice that Et ⊆ Ft, so

Prob[Et] = Prob[Et ∩ Ft] = Prob[Et | Ft] · Prob[Ft]. Rearranging yields that Prob[Et | Ft] =
Prob[Et]
Prob[Ft]

.

But we already calculated Prob[Et] above. And the probability of Ft, the event that at least one of
u, v is assigned a label, is at least 1/k, the probability that u is assigned a label. Hence, we have that

Prob[Et | Ft] ≤
∑

a
1
k |xu,a−xv,a|

1
k

=
∑

a |xu,a − xv,a| = 2yu,v.
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Applying this at the time t where the first of u, v is actually assigned a label gives us that they are
separated with probability at most 2yu,v. (Notice that t is a random variable, but this does not really
hurt us here.)

Hence, the expected total separation cost is

E [separation cost] =
∑

e=(u,v) Prob[e separated] · we ≤ ∑

e=(u,v) 2yu,vwe.

Summing up over the two cases, the total cost is at most

∑

v,a xv,ac(v, a) + 2
∑

e=(u,v) weyu,v ≤ 2 · cost(LP-OPT).

Thus, the algorithm is a 2-approximation.

Having obtained a 2-approximation, we naturally want to know if we can do better. While this question
has not been entirely resolved, we will show here that we cannot do better than a 2-approximation if the
bound on the optimum uses only the LP solution. We exhibit an integrality gap of 2, i.e., we show that there
are instances where the best integral solution is worse than the best fractional one by a factor arbitrarily
close to 2.

The example consists of a complete graph Kn with edge weights of 1 for each edge. There are n labels,
one corresponding to each vertex. The labeling cost is c(v, v) =∞, and c(v, u) = 0 for all nodes u 6= v. That
is, no node can be labeled with its own name, but any other labeling is free.

The best integral solution assigns each node label “1”, except for node 1, which is given label “2”. Then,
exactly the edges incident with node 1 are cut, so the total cost is n − 1. On the other hand, a fractional
solution can assign

xv,a =

{

0, if a = v
1

n−1 , if a 6= v.

Then, the cost incurred by each edge (u, v) is yu,v = 1
n−1 , so the total cost is 1

n−1

(
n
2

)
= n

2 . Hence, the

integrality gap is n−1
n
2

. As n→∞, this integrality gap approaches 2.

4.3 Uniform Labeling via Local Search

We can avoid having to solve an LP (which, while polynomial, tends to be fairly slow), by using a different
2-approximation algorithm based on Local Search where search moves use Min-Cut computations [69, 388].
In local search algorithms, we start with a solution, and repeatedly apply one of several simple moves, as
long as it leads to an improvement. When no more improvement is possible with the simple moves, the
algorithm terminates. It is rare that provable guarantees can be shown for efficient local search algorithms,
but this is one of the cases.

Here, a local search move works as follows: We pick a label a and try if converting other vertices to that
label will reduce the total cost. So we may label an arbitrary additional set of vertices with a, but no vertex
gets its label changed to anything except a in one step. Among all such new labelings, we choose the best
one, and then iterate over all labels. We thus obtain the following algorithm:

Notice that in this algorithm, the labeling fa can be found using a single Min-Cut computation. Indeed,
the algorithm is based on an insight by Greig et al. [201], who showed that for just two labels, the optimum
solution can be found in polynomial time using a single Min-Cut computation.

Remark 4.3 Perhaps the most natural local search algorithm would only consider relabeling one vertex at a
time, or a constant number. It is easy to see that any such algorithm can get stuck in highly suboptimal local
minima, and no approximation guarantee can be proved. Allowing wholesale relabeling of many vertices is
crucial.
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Algorithm 4 Local Search

1: Start with an arbitrary labeling f (e.g., the best individual vertex labeling f(v) = argminac(v, a)).
2: repeat
3: for all labels a in turn (e.g., round robin) do

4: Let fa be the best assignment with fa(v) =

{

a, if f(v) = a

a or f(v), if f(v) 6= a.

5: Update f = fa.
6: until no more improvement.

4.3.1 Approximation Guarantee

Theorem 4.4 The algorithm produces a 2-approximation.

Proof. The idea behind the proof is to show that the termination condition — the fact that no single-label
relabeling yielded any more improvement — is enough to be close to the optimum solution. Roughly, we
will do this by “decomposing” the optimum solution into the algorithm’s solution.

Specifically, let f be the algorithm’s solution and f∗ the optimal solution. For each a, we let Sa = {v |
f∗(v) = a} be the set of all nodes that the optimum labeled a. We define a labeling fa that “interpolates”
between f and f∗, by saying that fa(v) = a if f∗(v) = a, and fa(v) = f(v) otherwise. That is, the
interpolating labeling agrees with f∗ whenever f∗ chose a, and with the algorithm’s labeling otherwise.

Because fa was a candidate for relabeling from f , the termination of the algorithm implies that γ(f) ≤
γ(fa) for all labels a. We now divide the cost of f into that incurred inside Sa, outside Sa and across the
boundary. So we define

γS(f) :=
∑

v∈S

c(v, f(v)) +
∑

(u,v)∈S×S,f(u) 6=f(v)

w(u,v)

for any set S. As a result, we can rewrite γ(f) and γ(fa) as

γ(f) = γSa
(f) + γSa

(f) +
∑

(u,v)∈Sa×Sa,f(u) 6=f(v)

w(u,v),

γ(fa) = γSa
(fa) + γSa

(fa) +
∑

(u,v)∈Sa×S̄a,fa(u) 6=fa(v)

w(u,v).

Above, we argued that γ(f) ≤ γ(fa), and because the two labelings agree on the set Sa, we have that
γSa

(f) = γSa
(fa). On the other hand, fa and f∗ agree on Sa, so γSa

(fa) = γSa
(f∗). Taken together, this

implies that

γSa
(f) +

∑

(u,v)∈Sa×Sa,f(u) 6=f(v)

w(u,v) ≤ γSa
(f∗) +

∑

(u,v)∈Sa×Sa,fa(u) 6=fa(v)

w(u,v).

But under the last sum, whenever fa(u) 6= fa(v), then also f∗(u) = a 6= f∗(v), so we can upper bound
the sum by replacing fa(u) and fa(v) with f∗(u) and f∗(v). Thus, we have derived

γSa
(f) +

∑

(u,v)∈Sa×Sa,f(u) 6=f(v)

w(u,v) ≤ γSa
(f∗) +

∑

(u,v)∈Sa×Sa,f∗(u) 6=f∗(v)

w(u,v).

Because the Sa for all a form a disjoint cover of all nodes, summing up over all a now gives us that
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γ(f) ≤
∑

a

γSa
(f) +

∑

a

∑

(u,v)∈Sa×Sa,f(u) 6=f(v)

w(u,v)

≤
∑

a

γSa
(f∗) +

∑

a

∑

(u,v)∈Sa×Sa,f∗(u) 6=f∗(v)

w(u,v)

≤ 2γ(f∗),

because in the last sum, each edge between differently labeled nodes is counted exactly twice, while the
assignment cost for each node is counted exactly once. So the algorithm is a 2-approximation.

4.3.2 Running Time

For a given labeling f , we let γ(f) =
∑

v c(v, f(v))+
∑

e=(u,v),f(v) 6=f(u) we denote its total labeling cost. The
algorithm only chooses fa over f if it is better, so whenever changes happen, γ is strictly decreasing. As
a result, the algorithm cannot loop. Further, if all we and c(v, a) are integers, then the decrease will be at
least 1 in each iteration, so there can be at most W =

∑

e we iterations. Therefore, the algorithm runs in
pseudopolynomial time.

In order to make the running time actually polynomial, we can apply a standard trick (see, e.g., [25]):
only perform an update step if it decreases the cost by a factor of at least (1− ǫ

p(n) ) for some polynomial p and

some small constant ǫ. At the cost of an additional factor depending on ǫ in the approximation guarantee,
this ensures that the number of steps is at most logW/ log 1

1−ǫ/p(n) . (The analysis for this becomes a bit

more messy, though.) At this point, it appears to be open whether this or a similar local search algorithm
runs in strongly polynomial time, i.e., time not depending on W at all.

4.4 Further Reading

In the presentation of approximation algorithms, we focused on the case of uniform metric labeling. The
paper by Kleinberg and Tardos [256] also gives an approximation algorithm for arbitrary metrics d(a, a′)
on labels a, a′. The idea is to first probabilistically embed the metric into a hierarchically well-separated
tree metric with low distortion. A hierarchically well-separated tree metric is defined by assigning distance
labels on the edges of a tree. These distance labels must decrease exponentially from the root to the leaves.
For each node pair, their distance is the length of the unique path in the tree. The distortion of such an
embedding here is the largest factor by which the distance of any pair a, a′ increases when going from the
metric d to the tree metric. (Here, the tree metric has to be such that no distance shrinks.)

[256] shows how a modification of the LP-rounding based approach presented in Section 4.2 gives a
constant-factor approximation for hierarchically well-separated tree metrics. Combining this result with
the fact that each metric on k points can be probabilistically embedded into hierarchically separated tree
metric with expected distortion O(log k log log k) [39, 38] now provides an O(log k log log k) approximation
algorithm if there are k different labels to assign. Subsequently, Fakcharoenphol et al. [158] improved the
approximation guarantee for probabilistic embeddings into hierarchically well-separated trees to O(log k),
immediately implying the same approximation guarantee for the algorithm of Kleinberg and Tardos.

Several papers focus on algorithms for particular types of metrics. For example, Boykov, Veksler and
Zabih [68] show that if the metric is the linear metric d(a, a′) = |a− a′|, which applies for instance to pixel
intensities, then an optimum solution can be found using minimum-cut computations. Gupta and Tardos
[204] consider the variation of the truncated linear metric d(a, a′) = min(M, |a− a′|), which assigns all pairs
beyond a certain maximum distance the same penalty. For this version, they show that a variation of the
local search algorithm presented in Section 4.3 gives a 4-approximation in polynomial time.

Chekuri et al. [92] give an interesting novel LP-formulation for the general metric problem. As special
cases, they recover a 2-approximation for the uniform metric, an O(log k) approximation for arbitrary metrics,
and a 2 +

√
2 approximation for truncated linear metrics.
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The objective functions discussed in this chapter are all concave. This corresponds to penalties increasing
more slowly as the assigned labels grow more and more different. If the increase in penalties instead grows
more steep, the “metric” d will instead be convex. In fact, this simplifies the problem significantly. Hochbaum
[213] shows that if the function d(a, a′) is convex (in fact, even if there are different such convex functions on
each edge), and each node penalty function c(v, a) is convex in a, then the problem can be solved optimally
in polynomial time.

The idea of using cut-based algorithms for classification has proved useful in other applications as well.
In particular, Blum and Chawla [55] propose using it in the context of semi-supervised learning [88], where
a small set of labeled examples for learning is augmented by many more unlabeled training examples. These
unlabeled examples can be labeled by considering a graph representation of similarities. If the labels are only
binary (“Yes” or “No”), then the best labeling of the additional instances can be obtained using a Min-Cut
algorithm.

Classification problems of this type have been studied extensively in the literature on machine learning.
For example, Taskar et al. [381] study the problem for learning the weights of edges (or, more generally,
cliques) from example data. They also propose heuristics based on the popular belief-propagation algorithm
[338] for the classification problem. However, these heuristics come with no provable guarantees. Subsequent
to the paper by Taskar et al., several papers have proposed heuristics for dealing with sparse labels in a
networked classification task. For some examples and overviews, see [180, 320, 282, 177].
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Chapter 5

Rank Aggregation and Meta-Search

In previous chapters, we had discussed the problem of searching for relevant results on the WWW by
exploiting the link structure. Nowadays, there are already multiple search engines giving quite good results.
However, given that there are so many search engines already, employing different techniques, we may be
interested in combining their positive features, and constructing a meta-search engine that uses all of their
results [365, 296]. This leads very naturally to the problem of rank aggregation: given several orders on items
(such as search results), determine a consensus ordering, which somehow reflects all orderings together.

This problem can be studied from different perspectives. We could treat it as a machine learning problem,
by treating each search engine as an “expert”, and trying to learn which engine’s advice to trust, based on
past performance. The goal would then be to perform no worse than the best expert, but without knowing
ahead of time which one is actually the best expert.

Another approach is to consider it as an optimization problem. By defining an appropriate notion of
distance between rankings, we can then look for a ranking that is close to all given rankings in a certain
sense.

A third approach, and the one we begin with, exploits the close connection between rank aggregation and
voting. In both settings, we have items (candidates or web pages), and orderings on them (voter preferences
or search engine rankings). The goal is to find a ranking that is “agreeable” to all voters/search engines. By
using this analogy, we can leverage several centuries of thought on the issue of voting and social choice.

5.1 Rank Aggregation as Social Choice

To get a feel for the difficulties in determining a consensus ordering, let us look at a simple example where
a first choice is to be determined. Suppose there are three candidates, GWB, AG, and RN, and the voters’
preferences are as follows:

49% of voters prefer the order GWB–AG–RN

48% of voters prefer AG–GWB–RN

3% of voters prefer RN–AG–GWB

Who should be considered the winner legitimately? There are different plausible answers, depending on
the view we take of these preferences. We could argue that GWB was the candidate desired as winner by
the largest number of voters, and hence should be the winner. This is the outcome of plurality voting. On
the other hand, we could argue that a majority of voters prefers AG over GWB, and also over RN. Hence,
AG wins all pairwise comparisons, and should be the winner.

Over the years, different rules have been proposed for deciding on a winner, or even a complete ranking.
One of the earliest is due to Borda [122]. His method essentially uses the average position of a candidate,
averaged over all voters’ preferences, and sorts candidates in this order. More formally, for each voter, each
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candidate obtains a score equal to the number of other candidates he beat in this voter’s ranking. Candidates
are then ranked by the sum of their scores, summed over all voters. In our above example, this would give
us AG as the winner, as the score would be 49 · 1 + 48 · 2 + 3 · 1 = 148, whereas the score of GWB is
49 · 2 + 48 · 1 = 146 (and the score of RN is 3 · 2 = 6).

Although Borda’s rule looks useful at first, a major problem with it is that even the candidate with the
largest number of pairwise wins can lose. For instance, if 51% of the voters prefer the order ABC, and 49%
prefer BCA, A’s score is 51 · 2 = 110, while B scores 49 · 2 + 51 = 149, thus winning the election though
clearly more people prefer A to B than vice versa.

Taking the latter idea further, we may wish to attain the following property, called Condorcet Criterion
(after N. de Condorcet): If candidate A beats candidate B in pairwise comparison (i.e., more voters prefer
A to B than vice versa), then A should precede B. We quickly run into a problem, already observed by
Condorcet [123]: If three voters have the preference orders ABC, BCA, and CAB on three candidates
A,B,C, then A should precede B, B should precede C, and C should precede A. Obviously, not all three can
be accomplished simultaneously.

A relaxed version of the property, called Extended Condorcet Criterion (XCC) was proposed by Truchon
[383], and requires the following: If X,Y are a partition of the set V of all candidates (i.e., X ∩ Y = ∅ and
X ∪ Y = V ), and for all x ∈ X, y ∈ Y , x beats y in direct comparison, then all of X should precede all of Y .

This version is much less restrictive; in particular, for the example given above, it allows us to choose
an arbitrary ranking of candidates. In fact, we can show that for any input orderings, there is always an
ordering satisfying the XCC.

Proposition 5.1 For any input rankings, there is a consensus ordering satisfying the XCC.

Proof. Consider the directed graph G on V with an edge from x to y if x beats y in pairwise comparison
(we also write x > y for this). Notice that this is a tournament graph, i.e., a graph in which for each pair
of nodes, there is an edge one way or the other. We prove below that every tournament graph contains
a Hamiltonian Path. Consider the candidate ordering determined by the sequence of vertices along such a
Hamiltonian Path. Assume that this ordering fails the XCC. Then, there is a partition (X,Y ) of V such that
each x ∈ X beats each y ∈ Y in direct comparison, yet some y ∈ Y precedes some x ∈ X in this ordering.
Then, there must also be an adjacent such pair in the ordering, i.e., one where y immediately precedes x
on the Hamiltonian Path. But this is a contradiction, as there must have been an edge from y to x in the
Hamiltonian Path, so y must actually beat x in direct comparison.

Lemma 5.2 Each tournament graph G contains a Hamiltonian Path.

Proof. We use induction on the number of vertices, n. For n = 1, the claim is trivial. For n ≥ 2, let
x ∈ V be an arbitrary vertex. By induction hypothesis, G[V − x] has a Hamiltonian path x1, x2, . . . , xn−1.
If there is an edge from x to x1, or from xn−1 to x, then insert x at the beginning or end of the ordering,
respectively. Otherwise, there must be a k with 1 ≤ k < n− 1, such that there is an edge from xk to x, and
from x to xk+1 (start from x1, and follow the path until a node has an edge from x). By inserting x between
xk and xk+1, we obtain a Hamiltonian path for G.

Truchon [383] proves Proposition 5.1 in a different way, by showing that a Kemeny order also satisfies
the XCC. A Kemeny order [240] is defined as follows: for each ordered pair (x, y) of alternatives, let wx,y be
the number of voters who prefer x over y. A Kemeny order then minimizes the total sum of weights wx,y

going “backwards”, i.e., going from x to y with x > y in the ordering. We will prove this fact in Lemma 5.7
below.

5.1.1 Formalization of Social Choice Properties

So far, we have investigated several concrete approaches for determining a consensus ordering from several
given orderings. All approaches suffered from “unnatural” outcomes in some cases or others. Perhaps, it
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would thus make sense to axiomatize which properties a voting scheme should satisfy, and then look for
voting schemes meeting these axioms. We describe here the axioms proposed by Arrow [23].

Formally, we will associate with each voter i a preference order ≺i. A social choice function f takes all
of these k orders, and outputs a consensus order

≺ = f(≺1, . . . ,≺k).

Such a function f should intuitively satisfy certain properties.

Monotonicity : If a ≺ b, and b ≺i a, then swapping a and b in ≺i does not result in b ≺ a. Intuitively,
this means that if a ranks above b overall, then changing another vote in a’s favor does not affect the
relative ranking between a and b.

Non-triviality : For each pair a and b of candidates, there is some choice of orderings ≺i such that
a ≺ b. This ensures that the relative ordering of a and b actually depends on the votes, and is not
predetermined.

Independence of Irrelevant Alternatives (IIA) : Let ≺1, . . . ,≺k and ≺′
1, . . . ,≺′

k be two different pref-
erence orders for each voter, and ≺= f(≺1, . . . ,≺k) and ≺′= f(≺′

1, . . . ,≺′
k) the corresponding consen-

sus orderings. If B ⊆ V is a subset of candidates such that a ≺i b if and only if a ≺′
i b for all a, b ∈ B

(i.e., all ≺i and the corresponding ≺′
i agree on the orderings of B), then a ≺ b if and only if a ≺′ b

for all a, b ∈ B. What this expresses is that if no voter changes his relative preference between any
two candidates in B, then the final ordering among candidates of B does not change. In other words,
changing preferences merely with regards to third candidates does not affect the order of any two other
candidates.

Monotonicity and non-triviality together imply the property of unanimity : if a ≺i b for all i, then a ≺ b.
That is, if every voter prefers a over b, then a ends up ahead of b. To prove this fact, start with some set
of orders ≺i such that a ≺ b (such a set exists by the non-triviality property). Then, we keep swapping the
positions of a and b in all ≺i that previously had b ≺i a. By monotonicity, the outcome will still be that a
is ranked ahead of b, and eventually, a ≺i b for all i.

In trying to find social choice functions satisfying all these axioms, one quickly notices that this is
not so easy. In particular, the IIA property is not satisfied by many schemes. However, one class of
social choice functions meeting these requirements is dictatorship: the dictator function fi is defined as
fi(≺1, . . . ,≺k) =≺i. That is, the output is simply the preference of just one voter. Dictatorship is an
undesirable quality for a voting scheme. That gives us our last property:

Non-Dictatorship : f 6= fi for all i. That is, the aggregation will not disregard the opinions of all but one
voter.

Unfortunately, with this additional requirement, we have ruled out all remaining social choice functions:

Theorem 5.3 (Arrow, 1951 [23]) There is no function f satisfying all the above four properties. Hence,
the only functions satisfying the first three properties are the dictatorship functions.

Proof. To prove Arrow’s theorem, we show that any social choice function satisfying monotonicity, non-
triviality, and IIA is in fact a dictatorship function. We will do this by first proving the existence of a single
voter who can decide the order between two candidates; then, we prove that this voter is in fact a dictator.

First, we define sets that decide the outcome between two candidates. We call a set J of voters (A,B)-
decisive if the fact that all of J ranks A ahead of B is enough to guarantee that A will be ranked ahead of
B in the output. Formally, we write A ≺J B to denote that A ≺i B for all i ∈ J . We then say that J is
(A,B)-decisive iff A ≺J B implies A ≺ B. We call a set J of voters decisive iff J is (A,B)-decisive for some
pair (A,B).

One useful characterization of decisiveness can be derived from the monotonicity property: J is (A,B)-
decisive if and only if A ≺J B and B ≺J̄ A imply that A ≺ B. We will use this characterization later. Notice
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also that by the unanimity property, the set V of all voters is always (A,B)-decisive for each pair (A,B).
Hence, there must be some smallest decisive set J∗. We will prove that J∗ is actually a singleton.

Let {A,B} be the alternatives such that J∗ is (A,B)-decisive. Consider an arbitrary voter i ∈ J∗ from
this set, and define J ′ = J∗ − {i}. Assume that the voter i has preference order CAB, each voter in J ′ has
order ABC, and each voter in J̄∗ has order BCA. (Other candidates can be ignored by the IIA property).
In the final order, A must precede B, because J∗ is (A,B)-decisive, and all of J∗ ranks A ahead of B. In
addition, we know that C must precede A. The reason is that only J ′ would prefer A to precede C, so if it
actually did, then J ′ would be (A,C)-decisive, contradicting the assumption that J∗ is a smallest decisive
set. Now, by transitivity, we conclude that the final output must be CAB, so C precedes B. But i is the
only voter preferring C to precede B, so by our characterization above, {i} must be (C,B)-decisive. Because
{i} is thus decisive, it cannot be smaller than J∗, so we know that J∗ = {i}, and {i} is also (A,B)-decisive.

Next, we show that {i} is also (A,D)-decisive for allD 6= A and (C,D)-decisive for allD 6= C. We consider
the scenario where voter i has the order ABD, and everyone else has order BDA. Then, by unanimity, B ≺ D,
and because {i} is (A,B)-decisive, we have A ≺ B. By transitivity, the ordering is ABD. In particular, this
means that A precedes D, which only voter i prefers. Thus, {i} must be (A,D)-decisive. Replacing A by
C in the previous proof shows that {i} is also (C,D)-decisive. Also, by substituting C resp. A for D, we
further conclude that {i} must be (C,A)-decisive and (A,C)-decisive.

Next, we show that {i} is also (D,A)-decisive for all D 6= A, as well as (D,C)-decisive for all D 6= C.
Here, we assume that voter i prefers the order DCA, and everyone else prefers ADC. By unanimity, we
have D ≺ C in the outcome, and because {i} is (C,A)-decisive, we have C ≺ A. So the final order will
be DCA. Again, i is the only voter preferring D over A, so {i} must be (D,A)-decisive. Since {i} is both
(A,C)-decisive and (C,A)-decisive, we can simply switch the order A and C in the previous construction,
and prove that {i} is (D,C)-decisive as well.

As a final step, we show that {i} is in fact (D,E)-decisive for all D, E, and hence a dictator. We assume
that i votes DAE, and everyone else votes EAD. Because {i} is (D,A)-decisive and (A,E)-decisive, the final
ordering must be DAE. But by the same argument as before, this means that {i} is (D,E)-decisive.

In summary, we have proved that voter i is a dictator, completing our proof of Arrow’s Theorem.

The key step in the proof was to establish the existence of a decisive voter. This insight is crystallized,
among others, in Sen’s strengthening/generalization of Arrow’s Theorem [366]. Sen considers social choice
functions that don’t have to output a total ordering (i.e., ranking) of all alternatives, and instead only have
to give a partial order, stating which alternatives are preferable to each other. Sen shows an impossibility
result under the following two assumptions: (1) Unanimity (Pareto rule): if all voters prefer A to B, then
A should be ranked ahead of B. (2) There are at least two voters i, j, each of whom is decisive about the
relative ordering of at least one pair of candidates. Sen considers the “candidates” not to be individuals to
be voted between, but “states of society.” The second condition then simply means that at least two people
get to decide “one aspect of society,” such as one that only affects the specific voter. (E.g., what to eat for
dinner on a particular day.)

Arrow’s (and Sen’s) Impossibility results are quite disappointing in their implications. They suggests
that for a very reasonable definition of what democratic decision-making is, the process is impossible. Yet,
we observe frequently in practice that voting does work (reasonably) well. So one direction to pursue further
is to ask: what kind of restrictions do voter preferences in practice seem to satisfy? Our construction in the
proof was based on some very carefully crafted scenarios — perhaps, those don’t appear in practice.

This line of thought is pursued further in several papers. Black [53, 54] suggests single-peaked preferences
on the line, i.e., each voter is located on a one-dimensional space (such as the political spectrum from “left”
to “right”), and ranks preferences by distance from his own location. Barberà et al. [37] extend this to
higher-dimensional spaces with the L1-norm, and Richards et al. [352] extend it further to graph structures
shared by all agents, in which agents have single-peaked preferences at nodes. In these cases, consensus
voting is in fact possible, i.e., Arrow’s Axioms can be achieved.
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5.2 Aggregation as Optimization

A different approach from the axiomatic one (which, in a sense, we just saw fail) would be to treat the
determination of a consensus ordering as an optimization problem: to find a ranking that is as close as
possible to the given set of rankings.

In order to phrase the problem this way, we first need to define a notion of distance between two rankings.
As rankings are really nothing but permutations (so long as they are complete rankings — more about partial
rankings later), we can look at known distance measures on permutations. Two well-known such measures
are Spearman’s Footrule and Kendall’s τ .

Definition 5.4 (Spearman’s Footrule) Let ≺1, ≺2 be two orderings, and ≺1 (a) the position of element
a in the ordering ≺1. Then, the Footrule distance is defined as

F (≺1,≺2) =
∑

a

| ≺1 (a)− ≺2 (a)|

Notice that this is identical to the L1 distance between the vectors of positions.

Definition 5.5 (Kendall’s τ) Kendall’s τ counts the number of inversions (or Bubble Sort swaps) between
the two permutations. Writing

Ka,b(≺1,≺2) =

{
1 if a ≺1 b and b ≺2 a
0 otherwise,

we define

τ(≺1,≺2) =
∑

a,b

Ka,b(≺1,≺2).

The maximum value that can be attained by these metrics is n(n − 1) for Spearman’s Footrule, and
n(n−1)

2 for Kendall’s τ . In both cases, the maximum is attained for two orderings that are the reverse of
each other.

It is easy to see that the two metrics are not the same. One obvious example is when ≺1= 〈1 2〉, and
≺2= 〈2 1〉. Then, the Spearman Footrule distance is F = 2, while the Kendall distance is τ = 1. While the
two can be different, we can prove that they are not very different.

Theorem 5.6 (Diaconis and Graham [131]) For any orderings ≺1 and ≺2, we have

τ(≺1,≺2) ≤ F (≺1,≺2) ≤ 2τ(≺1,≺2).

Proof. We first show that F (≺1,≺2) ≤ 2τ(≺1,≺2). We do this by induction on the value of τ(≺1,≺2). In
the base case, when τ(≺1,≺2) = 0, both the orderings are the same, and hence F (≺1,≺2) = 0.

In the induction step, we look at ≺1 and ≺2 such that τ(≺1,≺2) > 0. Let ≺′ be obtained from ≺2 by
one switch towards ≺1. Then, τ(≺1,≺′) = τ(≺1,≺2)−1, and τ(≺′,≺2) = 1, F (≺′,≺2) = 2. By the Triangle
Inequality, applied to the metric F , we have that

F (≺1,≺2) ≤ F (≺1,≺′) + F (≺′,≺2) = F (≺1,≺′) + 2τ(≺′,≺2).

We apply the Induction Hypothesis to ≺1 and ≺′, obtaining that F (≺1,≺′) ≤ 2τ(≺1,≺′). Thus,

F (≺1,≺2) ≤ F (≺1,≺′) + 2τ(≺′,≺2) ≤ 2τ(≺1,≺′) + 2τ(≺′,≺2) = 2τ(≺1,≺2),

completing the inductive proof.
For the other inequality, τ(≺1,≺2) ≤ F (≺1,≺2), we use induction on F (≺1,≺2). In the base case

F (≺1,≺2) = 0, both the orderings are the same, so τ(≺1,≺2) = 0.
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For the inductive step, we have the problem that simple switches will not necessarily improve the value
of F . As an example, we can look at ≺1= 〈1 2 3 4〉 and ≺2= 〈4 3 2 1〉. In this case, a switch towards ≺1 will
result in the ordering ≺′= 〈4 3 1 2〉, which has F (≺1,≺′) = F (≺1,≺2). Thus, here we try to “meta-swap”
two elements such that one is too far to the left of its position in ≺1 and the other is too far right of its
position in ≺1.

Without loss of generality, we may assume that ≺1= 〈12 . . . n〉 (i.e., the elements are sorted), and ≺2 has
element i in position ai. Thus F (≺1,≺2) =

∑

i |ai − i|.
Let i be maximal such that ai 6= i, i.e., the rightmost element that is out of position. Notice that this

implies that ai < i, for otherwise, the element ai (the one that is in position ai in the ordering ≺1) would
be a larger index out of place. Let j ≤ ai be the largest index with aj > ai and aj > j, i.e., the rightmost
element to the left of i in the order ≺2 which is too far right. (See Figure 5.1 for an illustration.) Notice
that such an element j must exist by the Pigeonhole Principle: at most ai − 1 of the elements 1, . . . , ai can
be in positions 1, . . . , ai − 1. Also notice that aj ≤ i, as otherwise, the element aj , which is out of position,
would show that i is not maximal.

≺2

Position

i

aij

j

aj i

i+ 1

i+ 1

i+ 2

i+ 2

· · ·

· · ·

swapped in ≺′

Figure 5.1: An illustration of the second half of the proof. Element i is in position ai < i. Element j is in
position aj > j, aj > ai, and satisfies j ≤ ai. Elements i and j (in positions ai and aj) are swapped from ≺2

to ≺′.

Let ≺′ be the ordering obtained by swapping i and j in the ordering ≺2. Notice that in ≺′, neither i nor
j “overshoot” their actual positions, because j ≤ ai and aj ≤ i. Thus, both i and j move |ai − aj | positions
closer to their destination, and all other elements stay in position. We obtain that F (≺1,≺2) = 2|ai − aj |+
F (≺1,≺′). Applying the Induction Hypothesis, we thus have that F (≺1,≺2) ≥ 2|ai − aj |+ τ(≺1,≺′).

We can also calculate the Kendall τ distance between ≺2 and ≺′ quite easily. By making |ai−aj | switches
to the right of element i, we get it into position. Then, another |ai − aj | − 1 switches to the left of element
j move it to position ai. All elements in between are moved once to the left and once to the right, and thus
end up in the same position. Hence, we just proved that τ(≺′,≺2) ≤ 2|ai − aj | − 1. Now, by the Triangle
Inequality for the metric τ , we obtain that

τ(≺1,≺2) ≤ τ(≺1,≺′) + τ(≺′,≺2) ≤ τ(≺1,≺′) + 2|ai − aj | − 1 < F (≺1,≺2).

This completes the inductive proof.

Now that we have metrics to measure the difference between two orderings, given a list of several orderings
≺1,≺2, . . . ,≺k, we want to find an ordering≺ “close to all” of them. There are multiple concrete optimization
criteria we could be trying to minimize, for example:

1. The average τ distance 1
k

∑

i τ(≺,≺i).

2. The average Footrule distance 1
k

∑

i F (≺,≺i).

3. The maximum τ distance maxi τ(≺,≺i).

4. The maximum Footrule distance maxi F (≺,≺i).
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Notice that the first definition exactly defines Kemeny orderings, as discussed in the previous section.
For the sum of all Kendall τ distances is exactly the total number of disagreements between the ordering ≺
and all other orderings. Next, we show that a Kemeny ordering satisfies the extended Condorcet property.

Lemma 5.7 If ≺ minimizes
∑

i τ(≺,≺i), then it satisfies the extended Condorcet property.

Proof. We prove the lemma by contradiction. Assume that we have an ordering ≺ which minimizes
∑

i τ(≺,≺i), but does not satisfy the extended Condorcet property. Then, there is a partition (S, S) of the
alternatives {1, . . . , n} such that every alternative in S beats all those in S 1, yet ≺ ranks some j ∈ S ahead
of some i ∈ S. Therefore, there must be such a pair such that i and j are adjacent in the ordering ≺. Now,
swapping i and j improves

∑

i τ(≺,≺i) by i’s margin of victory. Since the relative orderings of no other
elements are affected, the objective function actually improves, contradicting the optimality of ≺.

Unluckily, minimizing the average τ distance is NP-hard, as proved by Dwork et al. [145] (we don’t give
the proof here).

Fact 5.8 If k ≥ 4, then minimizing
∑

i τ(≺,≺i) is NP-hard.

Instead, we may focus on the second objective function: minimizing
∑

i F (≺,≺i). This one can actually
be minimized in polynomial time. The intuition is to look at an ordering/permutation as a matching between
elements and positions. Then, we can express the total objective function value as a sum of “penalties”
incurred by each element for the position it is in. Specifically, we assign a penalty φj,p =

∑

i |p− ≺i (j)|
for putting element j in position p. (Recall that ≺i (j) denotes the position in which element j appears in
the order ≺i). For each j, we thus need to assign a (distinct) p(j) to minimize

∑

j φj,p(j). Since feasible
assignments are exactly perfect matchings between elements and positions, our goal is to find the cheapest
perfect matching in the complete bipartite graph where the edge (j, p) has cost φj,p. Finding minimum-cost
perfect matchings is known to be solvable in polynomial time, for instance by first computing any perfect
matching, and then repeatedly eliminating negative cycles in the residual graph (see [9, 257] for discussions
of polynomial algorithms for minimum cost matching).

Notice that the ordering minimizing the average Footrule distance is also a 2-approximation to the
problem of minimizing the average Kendall’s τ distance. For if OPT denotes the best Kendall ordering, and
≺ the best Footrule ordering, then

∑

i τ(≺,≺i) ≤ ∑

i F (≺,≺i) ≤ ∑

i F (OPT,≺i) ≤ 2
∑

i τ(OPT,≺i).

5.2.1 Partial Orderings

In the previous discussion, we assumed that the orderings were actually complete. What happens when we
are not given full orderings? Obviously, this is relevant in combining search engine results, since different
search engines will have different web crawls, containing different sets of pages in the search results. What
techniques can we then use to compare these orderings? Fagin et al. [157] study the issue of how to compare
top k lists. If the lists don’t all contain all of the elements, one needs to extend (or replace) the distance
notions defined above.

Fagin et al. suggest several techniques to deal with this. One is to augment all the lists such that all the
elements appear in all the lists, by appending the missing elements at the end of each list (since they were
clearly not considered to be in the top k by that list). This raises the question in which order the extra
elements should be appended to the lists. An “optimistic” view would define the distance between lists based
on the assumption that the missing elements appear in the same relative order as in the other list. Another
solution is to append the elements in a random order, and define the distance as the average.

More generally, we can define an extension of Kendall’s τ with a penalty p as follows. If both elements
i, j are in one list, and at least one element is in the other list, then the transposition penalty for i, j is just
the same as for Kendall’s τ , i.e., 0 or 1 depending on whether their order is the same or different. (If only i

1Recall that i is said to beat j if there are more orderings in which i precedes j than vice versa.
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is in the second list, then the penalty is 0 if i appears before j in the first list, and 1 otherwise.) If one list
contains both i and j, and the other list contains neither, then the penalty is p. Then, p = 0 corresponds to
the optimistic assumption, and p = 1

2 to the random ordering of absent elements.
[157] shows that neither of these approaches for pairwise comparison of lists satisfies the triangle inequal-

ity, and hence, we do not obtain a metric. However, they show that the distance measures can be both upper
and lower bounded by a metric.

Spearman’s Footrule can also be generalized by introducing a new location ℓ, and assuming that all
missing elements are at location ℓ, and calculating the normal Footrule distance. Notice that this does not
really define a permutation any more. The most obvious choice would be ℓ = k + 1, but other choices are
possible. The resulting Footrule distance actually does define a metric.

5.3 Further Reading

Even though this chapter is motivated mostly by rank aggregation for search engines and similar applications,
our initial example focused on elections. There, the goal is frequently different: rather than finding an
aggregate ordering of all alternatives, the goal is solely to determine one winner. While we could design
any number of simple rules (e.g., counting votes, runoff voting, etc.), there is now the issue that voters may
reason that incorrectly stating their preferences might help them achieve a more desirable outcome. For
instance, in our introductory example, knowing the distribution of other votes, the third type of voters (with
the order RN-AG-GWB) might now declare AG as their first choice to avoid their least favorite outcome.

Hence, it becomes important to study which types of voting systems are strategy-proof against voters
misrepresenting their preferences. The Gibbard-Satterthwaite Theorem [182, 359] gives an equally pessimistic
characterization to Arrow’s Theorem. It posits the following axioms:

1. Fairness: Each candidate can win if all voters unanimously prefer this candidate to all others.

2. Strategy-Proofness: No voter is ever better off misrepresenting his preferences.

The only voting rules satisfying these axioms (for three or more candidates) are again the dictator functions.
Again, an interesting question is what natural restrictions on the preferences would lead to non-trivial

social choice functions. In this context, the survey paper of Barberà [36] gives a nice summary of results.
Again, single-peaked preferences on the line and in higher dimensions with the L1-norm (e.g., [315]) lead to
non-trivial mechanisms that have voters truthfully revealing their preferences.

When we allow randomized social choice functions, the situation is not quite as dire as the one of the
Gibbard-Satterthwaite Theorem. Gibbard [183] shows that a rule is strategy-proof only if it is a random-
ization over dictator functions and two-choice rules (i.e., rules that prune all but two candidates, and then
decide on a winner among these two candidates by considering the votes). Conitzer [112] extends this result
to the case when the voting rule also needs to be anonymity-proof, in the sense that no agent benefits by
casting multiple votes. (This is necessary, for instance, for online polls, where the inherently anonymous
environment cannot prevent a user from voting multiple times.) Conitzer shows that in this case, the remain-
ing randomized social choice functions are significantly more restricted: the voting rule randomizes between
picking a uniformly random alternative, or picking two alternatives, and then checking if all agents prefer
one over the other. If so, that alternative is the winner; if not, then a fair coin is flipped. Thus, the outcome
is — except for a few unanimous choices — essentially always random.

Dictator functions also play an important role in the Fourier Analysis of Boolean Functions [333]. Using
the setup of Fourier Analysis, and a proof based on uniformly random orderings by all voters, Kalai [232]
gives a very short proof of Arrow’s Theorem. Kalai’s survey [233] describes the connections between Fourier
Analysis and Social Choice Theory in more depth, and relates them to the outcomes of elections with random
choices.

Indeed, the impact of randomization already impacted Condorcet’s description. He posits a model where
each voter chooses between two alternatives, and makes the societally most beneficial choice with some prob-
ability p > 1

2 . Condorcet [123] then shows that the majority vote has the highest probability of identifying
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the right choice. This is a direct precursor to analysis showing that the Kemeny order, under a natural
model of randomization, is most likely to be the societally preferred one. This is discussed in more detail in
papers by Young [404] and Truchon [383].

Finding a Kemeny ordering is equivalent to the well-studied problem of finding a Minimum Feedback Arc
Set. A set S of edges in a directed graph G is a Feedback Arc Set if and only if its removal breaks all cycles
in G. Clearly, once all cycles are broken, the nodes can be ordered by any topological sort order, respecting
all preferences. Thus, finding the smallest number of edges to remove in a (multi-)graph is equivalent to
finding the ordering minimizing the total number of inversions.

In general, the best known approximation for Feedback Arc Set is O(log n log log n) [152]. However, for
the case of rank aggregation, we know that the graph is a tournament graph, where an edge is directed only
from the candidate who wins the pairwise comparison to the loser of that comparison. The edge weight is
the difference in votes between the two relative orders. For this special case, Kenyon-Mathieu and Schudy
provide a PTAS [247], improving on a previous (simpler) 3-approximation algorithm due to Ailon, Charikar,
and Newman [12]. Ailon [11] shows how to extend these algorithms to the case when the rankings are only
partial (as discussed in Section 5.2.1), and gives a 2-approximation, and a more complex 3

2 -approximation
algorithm.

An issue somewhat similar in spirit to aggregating top-k rankings is the aggregation of rankings with
ties. Fagin et al. [156] give extensions of the Kendall τ and Spearman Footrule measures for those cases,
similar to the ones discussed for top-k lists in Section 5.2.1. Again, they generalize the result of Diaconis and
Graham to show equivalence of the measures to within constant factors, and discuss the issue of aggregation.

A different approach to ranking is proposed by Hochbaum [214]. She posits that not only are we given
pairwise comparisons, but for each pair (i, j) also a weight wi,j indicating how much one beat the other.
These weights may be inconsistent, e.g., A beat B, B beat C, and C beat A. The goal is to “smooth” them to
make sure that all numbers end up consistent, in the sense that for each pair of alternatives (i, j), all paths
from i to j have the same sum of weights in the end. At the same time, the smoothed weights w′

i,j should
be “close” to the original ones. [214] shows that so long as the penalty function for deviations is convex, an
optimal solution can be found in polynomial time using the dual of a minimum cost network flow problem
[8].

The issue of learning orderings is addressed in more depth by Cohen et al. [108]. The idea is to use
an expert learning [280, 281, 173] approach to finding scores for pairwise comparisons, and then find the
ordering that agrees best with these scores. The learning approach is also pursued by Joachims [231], who
uses Support Vector Machines to learn rankings from user preferences that are expressed in clickthrough
data.
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Chapter 6

Power-Law Distributions

In Section 1.2.3, we briefly remarked on the fact that the WWW graph appears to have a power-law degree
distribution, i.e., the fact that the frequency of nodes of degree d decays polynomially as d−γ for some
constant γ (as opposed to — say — exponentially). This observation clearly invalidated the Erdős-Rényi
G(n, p) model as a model for the WWW. In this chapter, we will investigate power-law distributions in much
more detail, with a focus on generational models which would predict power laws. Most of the material in
this chapter, and much more, is covered in the excellent survey of the topic by Mitzenmacher [300].

The existence of power law distributions has been observed empirically over the years in many natural
and man-made scenarios. Both the observation of such distributions and possible generational models have
received quite a lot of attention. A major surge in interest within the computer science (and physics)
community resulted from the paper by Faloutsos, Faloutsos, and Faloutsos [159], which demonstrated power
laws in a crawl of the Internet and WWW graphs. Some of the other contexts in which power laws had been
observed previously include:

Financial Models: price changes of securities in financial markets [286].

Biology: lengths of protein sequences in genomes [228] or variation among plant species [368].

Linguistics: word length frequencies [151, 410] and degrees of words in association networks [373].

City populations or distribution of income among people [335].

Number of papers published by scientists [321].

Formally, we define power law distributions as follows:

Definition 6.1 A non-negative random variable X is said to have a power law distribution if Prob[X ≥
x] = cx−α, for some constants c, α > 0.

If the variable is actually discrete, then the definition implies that Prob[X = x] = c′x−α′

, for different values
c′, α′ > 0. We will use the definitions interchangeably.

Power law distributions fall into the class of heavy tailed distributions : the probability that X assumes
a large value is only polynomially small, compared to the exponentially small probabilities for Gaussian,
Binomial, or other common distributions.

When given an actual set of data, we can recognize it as a power law most easily in a log-log plot, i.e., in
a plot where both axes scale logarithmically. For if f(x) = c · x−α denotes the frequency with which value
x was observed, then log f(x) = log(c) − α · log(x). Hence, in a log-log plot, we will observe a straight line
with a slope of −α and y-intercept of log(c). However, several important caveats should be noted:

1. In order to infer with confidence that a power law is indeed present, the straight line should extend
over several orders of magnitude at least. A very short straight-line segment in a log-log plot does not
indicate a power law very conclusively.
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2. To determine the coefficient α, it is usually not right to fit the best straight line to the data, e.g.,
via regression, since the log-log scaling of the plot invalidates the stochastic assumptions behind the
regression. A more in-depth discussion of this issue is given by Clauset et al. [105].

3. Indeed, a recent study [76], performing a rigorous statistical analysis on a large number of networks
previously reported to possess power laws or “scale freeness,” found very limited evidence that these
networks were truly scale free or power law.

Power Laws in the WWW

For the WWW, the paper of Broder et al. [75] was the first to show that the distribution of in (resp. out)
degree d is proportional to d−α for some value α ∈ [2.1, 2.2] (resp. α ∈ [2.7, 2.8]). Given the values of α, c,
we can calculate the mean of the power law distribution as

µ =
∑

d d · c · d−α = c
∑

d d
1−α.

Notice that the mean is finite iff α > 2. In particular, this implies that if the power law indegree
distribution were to continue to hold as the WWW grows, the average indegree of pages would remain finite.
The fact that the mean indegree of the WWW is finite is not too surprising, given that the average indegree
equals the average outdegree, and we don’t expect the average web page to have more than a constant
number of outlinks, as each requires actual work.

However, there are natural examples of networks that exhibit power laws with α < 2. For such networks,
we would predict that if the power law persists as the size of the network grows, the mean would diverge to
infinity:

The WWW at a site level (α ≈ 1.6) [47]. Here, single sites can include large numbers of web pages,
and we may expect the number of pages within a site to grow along with the web.

Co-authorship in high-energy physics ([321], α ≈ 1.2). High-energy physics papers often have very
large numbers of co-authors (in excess of 1000). It is not clear how to predict the scaling of this graph
in the future, but it is not inconceivable that future papers may have even larger author lists. (Notice
that by comparison, the mathematics co-authorship graph has a rather large value of α ≈ 2.5. Many
mathematics papers still have a single author.)

6.1 Preferential Attachment

In trying to explain observed power laws, many models posit a “rich get richer” phenomenon: entities (such
as nodes or web pages, dollars, plant genera, cities, individuals, etc.) that already have a large value (degree,
number of species, populations, wealth, etc.) have a tendency to attract more of the same. If this attraction
is linear in the current value, then power laws emerge.

In the case of the WWW or other graphs, such a behavior is called Preferential Attachment. It is
posited that newly arriving nodes link to an existing node v with probability proportional to v’s current
degree. Thus, high-degree nodes are more likely to attract new links. The underlying assumption here is not
necessarily that nodes make this choice deliberately, but rather that high-degree nodes (e.g., web pages with
high indegree) are more likely to be discovered in the first place, and thus linked to. Kumar et al. [265] make
this explicit by investigating a copying model, wherein newly arriving nodes randomly select another node,
and copy some of that node’s outlinks. A mathematically rigorous analysis of such models tends to be quite
involved (and is carried out, for instance, in [265]). However, by making some non-rigorous simplifications,
we can obtain qualitatively identical results.

Here, we study the following simple model: The graph starts with zero nodes. At each time t ∈ N, a new
node arrives and generates k outlinks; we will label the node with its arrival time t. Each outgoing link is
either uniformly random, which happens with probability 1 − α, or preferential with probability α. In the
latter case, the edge links to existing nodes with probabilities proportional to their degrees.
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Our analysis will follow the outline by Barabási et al. [34, 35]. Let di(t) denote the in-degree of node i
at time t. Then, because node i arrives at time i with no links yet, we have that di(i) = 0. At any time t,
the total number of inlinks (into all nodes) is kt, and the total number of nodes is t. Hence, the probability

that node i is the endpoint of a given new link at time t is 1−α
t + αdi(t)

kt . As k new links are created1, the

expected change in the degree of node i in step t is αdi(t)+k(1−α)
t .

We write β = k(1 − α). The difference equation for expected degrees above can be rewritten as a
differential equation (here, we are being non-rigorous in our approximation), giving us that

∂di(t)
∂t = αdi(t)+β

t

Rearranging and integrating we get,
∫ ∂di(t)

αdi(t)+β =
∫

∂t
t ,

which is easily seen to have solution 1
α ln(αdi(t) + β) = ln(t) + c. Solving for di(t) now shows that di(t) =

tα·eαc−β
α . We still have to find out the value of the constant c. To determine it, we can use the initial

condition that di(i) = 0. This gives us that iαeαc−β
α = 0, which by rearranging yields that eαc = β · i−α.

Substituting this back into the expression for di(t) now shows that

di(t) = β
α ((t/i)α − 1) .

To find the cumulative function for the number of nodes with degree greater than or equal to d, we first
solve the inequality di(t) ≤ d. This yields that the expected degree is at most d whenever i ≥ t ·(d · αβ +1)−

1
α .

Thus, the fraction of nodes with degree greater than d at time t is

t−i
t =

t−t·(d·αβ +1)−
1
α

t = 1− (d · αβ + 1)−
1
α .

To obtain the density function from this, we take the derivative with respect to d, which gives us density

1
β ·
(

d · αβ + 1
)−(1+ 1

α )

.

Thus, we observe a power law with exponent 1 + 1
α > 2. In particular, for α ≈ 0.9, we obtain the same

degree distribution as for the WWW.

Notice that for α = 0, the above analysis breaks down (and the result is meaningless). Indeed, for α = 0,
nodes never attach preferentially, but always choose uniformly at random. Older nodes will still end up with
higher degree, as they are around for more rounds, and can thus receive more incoming edges. Notice that
each node i, in each round t, receives an expected k/t new incoming links (as there are t competing nodes).
Hence, after t rounds, node i will have expected indegree

∑t
j=i+1

k
j ≈ k · log(t/i). The indices i having degree

at most d are thus i ≥ t · e−d/k, and the fraction with degree at least d is 1 − e−d/k. Taking a derivative
with respect to d gives us a density function of 1

k · e−d/k, which is sharply concentrated. In particular, we
will not obtain a power law. So the age advantage alone does not explain the power law distribution derived
above; rather, the preferential attachment was a crucial part of the model.

Notice that the preferential attachment model can be easily extended to include deletion of nodes and
edges and rewiring etc., and the same type of analysis based on differential equations can be carried out.
Usually, the power law degree distribution is preserved under these modifications, although they usually
result in a large number of parameters, whose relative sizes affect the exact value of the exponent.

While preferential attachment gives us the same degree distribution as was observed for the WWW, it
fails to obtain several other key properties (among others, all graphs generated are acyclic). For instance,
as the links are generated independently at random, the graph will likely not exhibit much community
structure (such as triangles or other unusually dense subgraphs). The copying model does slightly better in
this respect.

1we explicitly allow here the case that a node receives more than one link from the newly arriving node.
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6.2 Heavy-Tailed Distributions via Optimization

In the last section, we investigated the preferential attachment model for the generation of power law degree
distributions. While “rich-get-richer” models may be considered close to the truth for WWW-like graphs,
they do not seem appropriate for graphs such as the Internet, as there appears no natural reason why nodes
would choose to attach to high-degree nodes (or be more likely to find out about them). Hence, this class of
models is not very useful for explaining the power laws observed in the Internet at the AS level [159].

Fabrikant et al. [155] argue that the reason power laws evolve in the Internet is a heuristic optimization
performed by the owners of machines. Indeed, optimization as a cause for power laws has been investigated
before. Mandelbrot [285] and Zipf [411] argue that power laws in word lengths are caused by the “Principle
of Least Effort”: languages evolve so as to optimize the average information transmitted per character or
phoneme. (Notice, however, that the same result about word lengths can be obtained by assuming that
characters, including the space bar, are pressed completely randomly [299], as we see in Section 6.3 below.)
Carlson and Doyle [82] extend the argument for file sizes and other parameters, and Fabrikant et al. [155]
apply it to Internet-like graphs.

They posit the following graph growth model. A communication tree is built as nodes arrive uniformly
at random in a unit square. Let O be the first node that arrives, and assume that it arrives at the center
of the square. Each node i arriving subsequently connects to a node j that had arrived earlier. The issue is
which node j should i connect to. [155] argues that nodes want to be central in the network, i.e., few hops
from O. At the same time, they want to have low “last mile” cost for their connection to j. The tradeoff
is accomplished by considering the objective function dij + βhj where dij is the Euclidean distance between
nodes i and j, hj is the number of hops from j to O in the communication tree, and β is a given constant.
That is, node i connects to the node j minimizing dij + βhj , and consequently has hi = hj + 1.

Depending on the value of the parameter β, the graph evolves in very different ways.

If β is large (e.g., β ≥ 1√
2
), then the hop count is more important than any possible distance (all

distances to O are at most 1√
2
), so the graph will evolve to be a star with node O as the center. In

particular, the degree distribution will not be heavy-tailed, since all nodes but one have degree 1.

If β = 0, then the Euclidean distances become the only criterion for minimizing the objective function.
Thus, nodes connect to their closest neighbors. We will analyze this process briefly.

If node i has two neighbors j, j′, such that dij , dij′ ≥ r, then we also have that djj′ ≥ r (else j, j′ would
have been neighbors instead of both connecting to i). It follows that each neighbor j of i at distance r
has a circle of influence with area at least Ω(r2) around it, which does not contain any other neighbors
of i.

Now consider the O(log n) rings around i of the form Rk := {j | 2−(k+1) < di,j ≤ 2−k}, k =
0, . . . , 3 log n. Note that with high probability, each node other than i lies inside one of the Rk.
Within each Rk, node i can have at most a constant number of neighbors, because the area of each
Rk is at most O(2−2k), while each neighbor of i in Rk has an area of at least Ω(2−2(k+1)) in which no
other neighbor can lie. Hence, there is at most a constant number of neighbors in each such ring, and
a total of at most O(log n).

Thus, all degrees are bounded by O(log n), and the distribution of degrees is not power law, or even
heavy-tailed.

Thus, we next consider the case when β > 0 is small enough.

Theorem 6.2 There is some ε > 0 (depending on β), such that there are at least Ω(nε/6) nodes of degree
at least n1−ε.

Notice that while this proves that the distribution is heavy-tailed, it does not necessarily imply a power
law. Indeed, Berger et al. [43] subsequently showed that the distribution is not power-law. It has a heavy
tail, but does not exhibit all intermediate degrees to the corresponding extent.
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Proof. We first show that each neighbor of the first node O carves out a region of influence so that all
nodes landing in the region must link to it. This gives those nodes high degrees. Then, we show that there
will be enough such neighbors of O. Let S denote the set of all neighbors of O.

Consider a node i that connects to O, and has di,O ∈ [β, 2β]. Let ri = di,O − β. At the time node i
arrived, there are no other nodes from S within distance ri of i, because i linked to the root (otherwise, it
would connect to such a node). No node j arriving after i within distance di,j ≤ ri/2 connects to node O,
because it would be cheaper to connect to i. So there are no other nodes of S within distance ri/2 of i.
Every node j that lands within ri/4 of i links to i, because the cost to connect to node i is at most β+ ri/4,
while the cost to connect to another node i′ within distance di′,i ≤ ri/2 of i is at least 2β, and the cost to
connect to a node i′ with distance di′,i > ri/2 of i is at least β + di′,j ≥ β + ri/4 by the triangle inequality.

So node i has a region of influence with area Ω(r2i ) around it in which all nodes link to it, and thus
receives at least an r2i fraction of all edges.2

So we know that any such node i has high degree (as long as ri is large enough). We still need to show
that there are enough such nodes i. Among others, we want to ensure that not too many nodes will link to
i. To address this concern, consider a node j arriving after i. The line of indifference between connecting
to i and connecting to O is given by dj,O = β + dj,i. This curve is a hyperbola (see Figure 6.1(a)), i.e., the
nodes linking to i are a subset of the interior of that hyperbola.

Consider the following rings (Figure 6.1(b)) around O: Ring I has inner radius β and outer radius
β + n−ε/2, Ring II has inner radius β + n−ε/2 and outer radius β + 1

2n
−ε/3, and Ring III has inner radius

β + 1
2n

−ε/3 and outer radius β + n−ε/3. (ε is chosen small enough that β + n−ε/3 ≤ 2β.) Note that the area
of Ring II is a constant fraction of the total area of Rings I, II, and III.

bO b i

(a)

O
β

β
+
n −
ε/2

β
+

1
2
n
−ε

/3

β
+
n −

ε/3

III

II

I

(b)

Figure 6.1: (a) The hyperbola d(j, O) = d(j, i) + β (b) The three rings for the proof.

No node will ever link to a node j ∈ S with dj,O < β, because by triangle inequality, it would be cheaper
to link to O directly. Nor will any node that falls in these rings ever connect to any node more than one hop
from node O, because the cost would be at least 2β, so it would be cheaper to connect to node O directly.
Similarly, nodes in Ring II will not connect to a node j outside the outer circle, because the cost is at least
β + 1

2n
−ε/3, while a direct connection to node O would cost at most β + 1

2n
−ε/3.

2Note: to show that i will have degree Ω(r2i n), we need to be sure that enough other nodes will arrive after i to give it high
degree. We can solve this problem by only considering the degrees for nodes that are among the first n/2 to arrive. Then, at
least n/2 nodes arrive subsequently, giving us the desired high degree for those nodes. We only lose a factor of 2.
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In summary, each node i with β + n−ε/2 < di,O < β + 1
2n

−ε/3 links either to O or to some node j ∈ S

with β ≤ dj,O ≤ β + n−ε/3. Each such node that links to O carves out a hyperbola, so that subsequent
nodes that fall in the hyperbola do not link to node O.

If a new node i from Ring II arrives outside all existing hyperbolas of nodes j with β ≤ dj,O ≤ 2β, then
i links to node O. We want to find a lower bound on the number of hyperbolas defined by such i. Some

analytic geometry shows that the largest angle θ of each hyperbola is O
(√

ri/β
)

. Because ri < n−ε/3 in

Ring II, and β is a constant, θ is O
(√

n−ε/3
)

= O(n−ε/6). So there is room for Ω(nε/6) disjoint hyperbolas.

Each node i that carves out a hyperbola has degree at least Ω(nr2i ). Because ri = Ω(n−ε/2) in Ring II,
the degree of these nodes is at least Ω(n · (n−ε/2)2) = Ω(n1−ε). Among all the nodes arriving in any of the
rings (and thus claiming hyperbolas), at most a constant fraction lie outside of Ring II, so at least Ω(nε/6)
nodes will be in Ring II, claim hyperbolas, and thus have degree at least Ω(n1−ε).

Notice that while we only talk about the expected number of such nodes (and their expected degree),
standard occupancy bounds can be used to show concentration, i.e., that the actual outcome will be close
to the expectation.

This completes the proof.

6.3 A Simple Model for Power Laws in Word Frequencies

While Mandelbrot [285] and Zipf [411] argue that power laws in word frequencies can be explained by
optimization of transmitted content, Miller [299] proposes a much simpler model also resulting in power law
distributions.

Miller posits a completely random typer (e.g., a monkey at a typewriter). The typewriter has b > 1
letter keys, each of which is hit with probability p/b, for some constant p ∈ (0, 1). Word separators (such as
newline or space) are hit with the remaining probability q = 1− p.

In this model, the probability that any particular word of i letters is typed is (p/b)i · q, and all length-i
words have the same probability. Thus, in this model, each length-i word is more likely than any word of
length (i + 1). Since there are bi words of length i, they occupy the next bi positions (in word frequency

order) starting from position k =
∑

j<i b
j = bi−1

b−1 = Θ(bi−1). Thus, the words at positions k ≈ bi−1, . . . , bi

(roughly) each have probability (p/b)i · q ≈ pi · q · k−1. Taking logs with base b, we have that the log of the
probability is roughly − logb k + i logb p + logb q, which, since i ≈ logb k, is logb k · (logb p − 1) + logb q. We
thus obtain a power law with exponent logb p− 1.

The model of “monkeys at typewriters” has been extended by Conrad and Mitzenmacher [113] to the
case of non-equal probabilities for hitting different keys. They show — using a significantly more complex
proof — that power laws in the word frequency distribution persist even in this case.

We can also interpret the same mathematical model differently. Suppose that we have a hierarchy of
topics, organized as an (infinite) b-ary tree. Topics higher up in the tree are more general, while topics
further down are more specific. We traverse this tree starting from the root; at each step, we stop with
probability q, and otherwise choose a uniformly random child. Thus, the distribution of links to a particular
topic is power law with exponent logb p− 1.

We can extend this to a simple model for topic-based linking in the WWW. Let the tree be truncated
at a finite level now. For each of the topics (i.e., nodes of the tree), there are c pages covering that topic.
When a page is created, it generates k outgoing links. Each outgoing link goes to a page on the same topic,
or to a page on a more general topic, i.e., an ancestor in the tree. Say that a page links to another page h
levels up with probability proportional to γh, for some constant γ. We calculate the in-degree distribution of
a page p. Suppose that p is located h levels above the leaves. Thus, there are bℓ · c pages in the descendants
ℓ levels below p. Each gives rise to an expected k/c · γℓ links to p, so the expected number of links into p is
∑h

ℓ=0 b
ℓ · c · γℓ · k/c = k ·∑h

ℓ=0(bγ)
ℓ = k

bγ−1 ((bγ)
h+1 − 1).

Thus, if bγ < 1, the nodes’ degrees are nearly uniform, because (bγ)h+1−1
bγ is bounded on both sides by

some constant. On the other hand, when bγ > 1, most of the contribution to any node comes from the leaves
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(since there are many of them, and they have high enough probability to link up). The nodes of degree at
least k

bγ−1 ((bγ)
h+1 − 1) are those at level h or above, which is a b−h fraction of all nodes. Now, ignoring

constant factors and additive terms, we can solve for h in d = (bγ)h+1, giving us h = logbγ d−1. As a result,

roughly d
− log b
log bγ nodes will have degree d, i.e., we again observe a power law.

6.4 Further Reading

In considering merely a log-log plot, power laws are easily confused with lognormal distributions. A random
variable X is lognormal if lnX has as normal (Gaussian) distribution. See the discussion in Mitzenmacher’s
survey [300] for more details. Lognormal distributions can for instance be obtained by processes where in
each step t, each quantity Xj grows by a constant factor F t

j (rather than a constant additive term). If the
F t
j are i.i.d., then in the limit, the Xj will be lognormal. Huberman and Adamic [221] show that combining

such a multiplicative growth process with different arrival times (as we saw in Section 6.1 for the special
case α = 0) also gives rise to power-law distributions. Similarly, Champernowne [87] shows that combining
a multiplicative update with a hard lower bound on all sizes Xj leads to a power law.

The power-law nature of the Internet topology reported in [159] has been the subject of quite a lot of
discussion. As noted by Chen et al. [95], the data set used for analysis missed a large fraction of physical
connections, comprising essentially a union of BFS trees of the topology. Lakhina et al. [269] showed via
experiments that for sampling based on shortest paths like the one in the data set analyzed by Faloutsos,
Faloutsos, and Faloutsos, even G(n, p) random graphs would exhibit a power law (though with exponent
−1). This was proved by Clauset and Moore [103], and in a more general setting by Achlioptas et al. [3].
The upshot here is that even random regular graphs will exhibit a power law if the edges are sampled in a
manner akin to the traceroute tool used for the data set of [159].

Instead of asking for “natural” models which predict the structure of known graphs with power law degree
distributions accurately, we could instead start out from the assumption that the graph is uniformly random
subject to its degree distribution, and investigate which properties follow merely from this degree distribution.
Along these lines, Molloy and Reed [303, 304] analyze the point at which a giant component emerges in a
random graph with given distribution, and how the component’s size depends on the distribution. Using
mean-field approximations and generating functions [400], Newman et al. [329] give an alternate derivation
of the results of Molloy and Reed, and prove several other properties of random graphs with a given degree
distribution.

While hard-wiring a desired degree sequence is a first step toward matching various properties of real-
world observed networks, it is really only that. There are many other properties not nearly as well explained
by such uniformly random graph models. One of the most prominent ones is “clustering”: the fact that
nodes sharing a neighbor are more likely to be connected themselves. Several recent papers have proposed
simple random graph models resulting in clustering. The simplest one is that of Random Intersection Graphs
[369, 237]. Here, we are given two types of nodes: individuals and groups. We generate a random bipartite
graph between those two types of nodes. Then, we connect two individuals if they share at least one group.
Thus, all individuals in the same group form a clique, and we have built in significant clustering. This model
has been extended to account for different degree distributions as well (see, e.g., [323, 128]).

While this class of models can match degree distributions while building in clustering, there may be other
parameters of a real-world network we would also like to match. One class of random graphs lets us match
basically any features of a graph we care about. The model is called ERG (Exponential Random Graphs)
or p∗ graphs [171, 354, 394]. The high-level idea is to define several features (e.g., number of triangles,
degrees, diameter, etc.), and posit that a graph G is generated at random with probability proportional to
exp(

∑

S∈G αS), where S ranges over all features of interest, and [S ∈ G] denotes that feature S is present in
the graph G. (Notice that this approach is quite similar to the Markov Random Field analysis in Section 4.1.)
If we have chosen the αS parameters, we can sample random graphs from this distribution. A complementary
problem is to find the parameter settings for αS giving the maximum likelihood estimate of an observed graph
G. Both problems appear to be computationally difficult in general, though there are heuristics for sampling
which sometimes work well in practice.
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One drawback of the basic preferential attachment model of Barabási et al. is that it produces only acyclic
graphs. Hence, various papers have considered generalizations of this model. A fairly broad generalization
is due to Aiello et al. [10]. In their class of models, a random number of nodes and edges can be added
in each step, including edges between previous nodes. The attachment is again preferential, and nodes can
arrive with initial indegree and outdegree weights. The advantages of this model claimed in [10] include the
fact that it can model arbitrary power-law degree distributions on both indegrees and outdegrees, while also
allowing for arbitrary density, and subsuming most past models. A fairly detailed overview of models up to
that point in time, together with results on structural properties and implications of these models (again
using mean-field approximations) is given by Albert and Barabási [13].

Another generalization was proposed by Leskovec et al. [278] and termed the Forest Fire Model. It was
based on the observation that real-world networks often appear to become denser over time (i.e., the number
of edges increases super-linearly in the number of nodes), and that their diameter often shrinks over time.
Standard random graph models do not predict such behavior. In the Forest Fire Model, nodes arrive one at a
time. When a node arrives, it chooses one ambassador w to link to. In addition, it selects x ∼ Bin(1/(1−p))
of w’s neighbors, links to them, and recurses on these neighbors with the same value x. p is a parameter of
the model, and the model allows weighing forward and backward edges differently in determining a node’s
neighbors. Using simulations, Leskovec et al. show that this model matches the evolution of density and
diameter in several observed real-world graphs.

While the mean-field approximations in Section 6.1 and in several of the papers cited here are not
mathematically rigorous, a beautiful result by Wormald [401, 402] gives sufficient conditions under which
the results of the differential equations give a precise approximation (up to lower-order terms) of the correct
outcomes, with high probability. A perhaps more intuitive description of this result is given by Achlioptas
[2].
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Chapter 7

Small-World Graphs and
Decentralized Search

In the chapters so far, we have explored the structure of information networks, and how additional information
can be extracted by looking at it in graph-theoretic terms. In the process, we found that it is often useful
to think about generative models for the network structure: if we can explain how the network formed, then
we might be in a better position to label or cluster its parts, or observe other useful high-level structures.

In this and the remaining chapters, we will think of the network not so much as being the artifact to
analyze and extract information from, but as a substrate that itself disseminates information. Thus, we will
analyze the dynamics of information spread within social and computer networks, and try to understand
what network structure would enable quick and efficient dissemination.

We begin by discussing the small-world phenomenon, both in its historical context and algorithmic
implications. The expression refers to the anecdotal observation that any two people appear to be connected
by a small chain of intermediate social acquaintances. Restated in graph-theory terms, this means that social
networks (graphs whose nodes are individuals, and whose edges capture friendships, acquaintances, or other
pertinent interactions) appear to have small diameter.

Stanley Milgram, in 1967, was the first to design an experiment to explore this hypothesis more scien-
tifically [298]1. His experiment, described in more detail in Section 7.1, led him to the conclusion that the
average path length between two individuals in the social network of acquaintances within the United States
is about six hops. The phenomenon has made its way into pop culture, including movies and plays, via the
phrase “Six Degrees of Separation”. Finding short paths in social networks is also the object of the game
“Six Degrees of Kevin Bacon”: the goal is to find a short path from any actor to the actor Kevin Bacon in
the graph consisting of actors and their co-appearances in movies2. Mathematicians have a similar concept:
the Erdős number. It captures the shortest path distance between a scientist and the famous Hungarian
mathematician Paul Erdős, where edges represent co-authorships of papers3.

7.1 Milgram’s Experiment (1967)

In 1967, Stanley Milgram attempted to verify the small-world phenomenon quantitatively. His experimental
setup was as follows: He selected random people from locations like Kansas or Nebraska, and asked them
to forward a folder to a target in Cambridge, MA or Boston. The rules of forwarding were that the current
holder of a letter could only mail it to someone they knew on a first-name basis. That person was to mail the

1Milgram’s other famous experiment explored obedience to authority, and involved making participants believe that they
were administering very dangerous electro-shocks to other participants [297].

2See http://oracleofbacon.org.
3See http://www4.oakland.edu/enp/.
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folder on to another first-name acquaintance, etc. Returned tracer postcards tracked the progress of each
such forwarding chain.

His first target person was the wife of a divinity student living in Cambridge, and starters were located
in Wichita, Kansas. Milgram found that the very first folder reached her in just four days and took only
two intermediate acquaintances. However, it appears that the completion rate of chains in this experiment
was very low, so Milgram conducted a second study. Among other things, he made the folders much more
impressive and official looking, which appears to have led to significantly higher participation. In the second
study, the starters were located in Nebraska, and the target was a stockbroker from Sharon, MA, working in
Boston. Milgram reported that “chains varied from two to ten intermediate acquaintances, with the median
at five” [298, p. 65]. Subjects appeared to be able to reach the target with an average of six hops.

Graph-theoretically, Milgram was trying to find short paths in the social network of people in the US.
Instead of using the “correct” approach of BFS, he had to rely on DFS, as the typical branching factor of
several hundred social acquaintances would have resulted both in much work for all participating individuals,
and an illegal chain letter using the US Postal System. So what Milgram found was really just an upper
bound on the shortest paths.

As analyzed by Travers and Milgram [382], out of 296 chains, only 217 chains started, and 64 completed.
The number of intermediate nodes varied between two and ten, with a median of 5 and a mean of 6. The
frequencies that Milgram measured were monotonically increasing to chains of length 4, then dropped slightly
for chains of length 5, and increased to the highest frequency for length 6, dropping again afterwards until
length 10. Travers and Milgram argued that the drop in frequency at 5 is actually caused by the experimental
results being a superposition of different populations.

The attrition rate (the frequency of not forwarding the letter) was about 25% at each step. Thus, it seems
likely that the observed distribution is skewed to shorter chains: if a chain was naturally longer, then it has
a higher probability of not finishing at all, and thus not being counted towards the average. White [399]
gave a simple calculation correcting for this attrition. The argument is that if we observe a fraction of

nj

n
chains of length j, then the true fraction of such chains would have been roughly proportional to (4/3)j

nj

n ,
as each chain of length j does not complete with probability (3/4)j . Correcting for attrition in this way,
White suggests that Milgram’s data are more supportive of a median distance of 7–8 between individuals.

Additional interesting details about the Milgram experiments were that many chains had the same person
as a last step: out of all completed chains, 25% went through the same last person, and 50% through one
of three persons. This may be taken as an indication that society relies on “hub persons” for connectivity.
Killworth and Bernard [250] analyzed the “rules” individuals used for deciding whom to forward letters to.
In a separate experiment, they simply asked respondents (in West Virginia) to identify their “first hop” to a
number of different targets. They found that geographic location and occupation were by far the dominant
dimensions, with others used significantly less frequently.

Kleinfeld [258] revisits Milgram’s experiment and finds that there were a number of loopholes in Milgram’s
experiment. Milgram’s sampling technique to determine starting points for the chains was biased since his
target was a stockbroker, and a number of his starters were stockholders, who would be more likely to
know stockbrokers. He recruited people through advertisements for people who were well connected, and
the experiment was generally more likely to attract economically better-off people, who tend to have more
long-distance connections. In addition, out of the Kansas and Nebraska studies, only the Nebraska one,
which was much more successful, was published.

7.2 Formalization, and Expander Graphs

If we want to reason about small-world networks analytically, we first need to come up with a good definition
of the concept. A simple (and popular) definition is to consider a graph a small world if it has small (e.g.,
logarithmic) diameter. However, this ignores another characteristic of small worlds, namely that the graph
exhibits a lot of clustering and regular structure, similar to lattices. Watts and Strogatz [397] propose using
the notion of clustering coefficient C (see, e.g., [393]), defined as the number of triangles in the graph divided
by the number of adjacent edge pairs. Thus, it can be interpreted as the probability that two nodes are
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connected, given that they share a mutual friend. For a complete graph, the clustering coefficient is 1, and
for an empty graph, it is 0.

If we are interested merely in finding graphs with small diameter, our task is easy: the complete graph
has diameter 1. However, the complete graph is certainly not a good model of social networks, as individuals
tend to have a smaller number of contacts. So we are looking for graphs of small diameter and low degree.

One way in which we can achieve this goal is by virtue of expanders : A graph G is an α-expander (or
α edge expander) if each vertex set S ⊆ V with |S| ≤ n/2 has at least α|S| edges leaving. Intuitively,
this means that no two “large chunks” of the graph can be disconnected by removing few vertices or edges.
Obviously, the larger α, the better an expander the graph is. Normally, people are particularly interested in
families of expanders where α is constant, i.e., does not become smaller as the number of nodes n increases.

While the definition of expanders seems useful, we still have to find out whether they actually exist. It
is pretty obvious that complete graphs are expanders (with α = n/2), but again, we are looking for lower
degrees. A binary tree is not a good expander, as the left half of the tree has n/2 nodes, but only one edge
leaving. However, hypercubes are good expanders (with α = 1), with degree log(n).

When we want to reduce the degree all the way down to constant, i.e., not increasing with n, the
task becomes quite a bit more difficult. For a long time, no explicit constructions were known, and the
first explicit constructions were based on Cayley graphs of rather difficult looking algebraic groups. More
recently, Reingold et al. [351] presented a new way of constructing constant degree expanders via the zig-zag
graph product. On the other hand, it is much easier to construct expanders randomly. For any d ≥ 3, almost
all d-regular graphs are actually expanders (notice that for d = 2, any d-regular graph is just a union of
disjoint cycles, and thus certainly not an expander.)

It is not quite obvious how to generate a uniformly random d-regular graph. It is much easier to instead
generate a d-regular multigraph, in which we also allow self-loops and parallel edges. For then, we can use
the configuration model: each node has d edge ends sticking out, and we construct a uniformly random
matching among those edge ends, by randomly picking two of the remaining edge ends and pairing them
up until all edge ends are matched. For this model, whenever d ≥ 6, a fairly straightforward analysis using
standard tail bounds (Martingale or Chernoff bounds) shows that with high probability, the resulting graph
is an expander. For 3 ≤ d < 6, the analysis gets a little messier, as tail bounds are not quite strong enough:
one has to reason a bit more carefully about binomial coefficients and such.

7.2.1 Properties of expanders

Expander graphs, and the notion of expansion, are important for several reasons. From a network design
perspective, expander graphs are resilient to node or edge failures, as a small number of failures will not
disconnect large parts of the network.

Expansion also plays an important role in the analysis of random walks and their mixing time (and thus
in the context of MCMC sampling). The reason is that a low expansion means that few edges connect two
large components. Thus, a random walk starting in one of the components has small probability of crossing
to the other component, and it will take a long time until the initial bias in the probability of being at any
one node gets evened out.

For our purposes, the reason that expanders are interesting is that they have small diameter.

Lemma 7.1 If G is an expander of maximum degree d, then G has diameter O(log n).

Proof. Consider a BFS of G starting from any node. For each layer S of the BFS, at least α|S| edges are
leaving the set of all nodes already reached, hence at least α

d |S| new nodes are hit, so long as |S| ≤ n/2.
Thus, at each layer, the total number of nodes in the BFS tree grows by a factor of at least 1 + α/d, and n

2
nodes are reached in

log1+α/d(n/2) = O( logn
log(1+α/d) ) = O( logn

α/d ) = O( dα log n)

steps. Carrying out BFS from both the source s and target t, they each reach n
2 nodes. After one more step

of BFS, they must therefore intersect at some node v, and the concatenation of the s-v and t-v paths gives
an s-t path of length O( dα log n).
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7.3 The Watts-Strogatz Model

In the past section, we began our quest for graphs that would model the empirically observed “small-world
phenomenon”: the fact that most (or all) pairs of people tend to be connected through short paths of mutual
acquaintances. We observed that expander graphs tend to have small diameter, i.e., short paths, and that
random d-regular graphs for d ≥ 3 are with high probability expander graphs.

While this in principle will give us “small worlds”, it is unsatisfactory in that real social networks do
not at all look like random graphs. They exhibit a lot of “clustering” in the form of triangles or other short
cycles. Indeed, two people sharing a common acquaintance are more likely to know each other as well. This
observation has led to the definition of the clustering coefficient of node v as

|{(u, u′) | (u, u′) ∈ E, (u, v) ∈ E, (u′, v) ∈ E}|
(
dv

2

) ,

i.e., the fraction of actual triangles among pairs of neighbors of v. Random graphs have low clustering
coefficient (roughly d/n for d-regular graphs), while real social or collaboration networks have much higher
clustering.

In order to form a more realistic model giving both small diameter and high clustering coefficient, Watts
and Strogatz [397] propose a simple model of small worlds. Here, we look at a slight modification (mostly
for analytical simplicity), but will still refer to it as the Watts-Strogatz model. Start with a (structured)
graph H (for instance, the 2-dimensional grid, or a ring), and add one or a few random edges from each
node. (Alternately, “rewire” one or a few edges randomly.) The result will be that the edges of H will
lead to high clustering coefficient, while the random edges lead to small diameter, as per our analysis of
expander graphs. The resulting graph will still “resemble” H a lot. Intuitively, H is supposed to model the
“traditional” social network, based perhaps on physical proximity or related employment, while the random
edges model “random” friends.

An interesting additional outcome of Milgram’s experiment [298] was not only the existence of short
paths in social networks, but also the fact that individuals, who do not have a map of the graph, were able
to actually find short paths. Their decisions were only based on local and qualitative information. Hence,
an interesting question is what properties of a graph allow efficient decentralized routing based solely on
local information. In addition to a better understanding of social networks, this question is also relevant for
designing networks permitting simple routing.

To make this question more concrete, we can work with the Watts-Strogatz Model, and ask about
the effect that different distributions of long-range links have on the ability to route with a decentralized
algorithm. Watts and Strogatz considered the case of uniformly random links, i.e., each node links to one
other uniformly randomly chosen one. We will show that in the case of the 2-dimensional grid of size
n × n, with this distribution, there is no local routing protocol reaching its destination in o(n2/3) steps in
expectation. Here, a local protocol is one in which a node only knows the history of the message in the
network so far (including which nodes it has visited), and its own links.

For the proof, consider a ball B of radius n2/3 around the destination node t, and assume that the source
s of the message lies outside this ball. By the Principle of Deferred Decisions4, we can assume that each
node only generates its random outgoing link once it receives the message. Consider the first δn2/3 steps of
the protocol (for some constant δ ≪ 1). Because each node’s outgoing link hits B with probability at most

O( (n
2/3)2

n2 ) = O(n−2/3), only O(δ)≪ 1 long-range links hit B in expectation, and with constant probability
(by Markov’s Inequality), none do. Thus, every step ending in B must have been a step on the grid. As a
result, with constant probability, t was not reached in δn2/3 steps, completing the proof. (Notice that the
analysis is tight, in that in O(n2/3) rounds, with constant probability, B is reached, and within at most
another O(n2/3) grid steps, the message makes it to t).

To study the effect of the distribution of long-range links on the ability to route in a decentralized manner,
let Prob[v → w] denote probability that v connects to w via a long-range link. Assume that this probability

4The Principle of Deferred Decisions [314] states the intuitively obvious fact that we can defer coin flips or other random
decisions until their outcomes are actually needed/referenced.
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is a function of dv,w, the distance between v and w. Intuitively, it seems that connections between distant
individuals are less likely, so the probability should be monotone decreasing.

If Prob[v → w] is an inverse exponential function of dv,w, then it decreases very rapidly, and long-range
links are too unlikely. Hence, we use a polynomially decreasing function in dv,w [252], i.e., Prob[v → w] ∼
(dv,w)

−α for a constant α ≥ 0.
To understand this distribution well, we need to calculate its normalizing constant, i.e., the γ such that

Prob[v → w] = 1
γ d

−α. By noticing that for each d, there are Θ(d) nodes at distance d from any given node
v, we can calculate

∑

w d−α
v,w ≈ ∑n

d=1 dd
−α =

∑n
d=1 d

1−α =







Θ(n2−α) for α < 2
Θ(log n) for α = 2
Θ(1) for α > 2

We previously proved that for α = 0, the case where the destination of each long-range link is a uniformly
random node (independent of the distance between v and w), nodes cannot route efficiently based solely on
local information. For very large α, we also expect local routing (or any routing, for that matter) to not
work well, as long distance links will be exceedingly rare. Of the three cases (1) α = 2 (2) α < 2 and (3)
α > 2, it seems thus most promising that α = 2 may work well for local routing. Indeed, we will show that
it is the only exponent for which local routing can work in poly-logarithmic time.

The case α = 2

Claim 7.2 For α = 2, we can route locally in Θ(log2(n)) steps in expectation.

Proof. The algorithm is the simple greedy rule of always forwarding the message to the neighbor closest
to the destination.

Let s be the source node and t the destination node, at distance d from s. We will show that within an
expected O(log n) steps, the distance of the message to t is halved. (Notice that the time here is independent
of d.) In order to prove this, we let Bd/2(t) = {v | dv,t ≤ d/2} denote all nodes in the ball of radius d/2
around t.

Because there are Θ(d2) nodes in Bd/2(t), and each is at distance at most Θ(d) from s, we can lower-bound
the probability for s’s long-range link to end in Bd/2(t) as follows:

1
Θ(logn)

∑

v∈Bd/2(t)
d−α
s,v ≥ Θ

(
1

logn · d2 · d−α
)

= Θ
(

1
logn

)

.

Notice that this gives a notion of “uniformity of scales”: the probability of halving the distance is the
same independently of what the distance itself is. Similarly, if we think of circles around v of size 2k for
k = 0, 1, . . ., then v has (approximately) equal probability of having its long-range link in any of the annuli
between circles of radius 2k and 2k+1.

By our calculations above, any single long-distance edge reachesBd/2(t) with probability at least Θ
(

1
logn

)

.

If not, the message is moved to another node, no further away, which again has at least the same probability of
reaching Bd/2(t), etc. Hence, the number of steps until a long-range edge will reach Bd/2(t) is lower-bounded

by a negative binomial random variable with parameter Θ
(

1
logn

)

. In particular, the expected number of

steps to hit Bd/2(t) is Θ(log n), and the actual number is sharply concentrated around the expectation. As
the distance of the message from t is halved every Θ(log n) steps (independently of the current distance), t
will be reached after Θ (log n log d) = O

(
log2 n

)
steps.

The case 0 ≤ α < 2

We already saw that for α = 0, local routing takes a polynomial number of steps. The problem was that
links were too unstructured, and the chain was unlikely to encounter any node with long-range link into a
(sufficiently small) polynomial-sized ball around the destination. Here, we will generalize the construction
to show that the same problem occurs for all α < 2.
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Claim 7.3 For α < 2, local routing requires a polynomial number of steps in expectation.

Proof. Let δ = 2−α
3 , and B(t) be the ball of radius nδ around t.

This time, we want to upper-bound the probability that a given node has a long-range link into B(t).
Even when two nodes are very close together, say d = 1, the probability of a long-range link between them
is at most 1

γ = nα−2 = n−3δ. As there are only Θ
(
n2δ
)
nodes in B(t), the probability for a given node to

have a long-range link into B(t) is at most Θ
(
n−δ

)
. Thus, it takes nδ steps in expectation to encounter a

long-range link into B(t). On the other hand, if no such long-range link is encountered, then the chain takes
at least nδ small steps (namely, all the last nδ steps). In either case, the total number of steps is Ω

(
nδ
)
.

The case α > 2

For small α, the problem is that, while short paths exist, they cannot be found with local information alone,
as the random links are “too random”. For large α, the problem is that there are not many long-range links
— the argument below needs to be strengthened only slightly to show that the diameter of the graph is
actually polynomial in n.

Claim 7.4 For α > 2, the expected number of steps required to route from s to t is polynomial in n.

Proof. Following our intuition that long-distance links are unlikely, we first calculate the probability that
a link is longer than some given number m. Using again that there are Θ(d) nodes at distance d from a
given node, this is at most

Θ (
∑∞

d=m dd−α) = Θ
(∑∞

d=m d1−α
)

= Θ
(
m2−α

)
.

Hence, the probability that a link’s length is at least, say, n1/2, is at most Θ(n
2−α

2 ). So if we only take

n
α−2
2α steps, the probability of having any of them encounter a long-range link longer than n1/2 is polynomially

small (O(n
2−α

2 (1−1/α))). But if none of them encounter any longer links, then the total distance covered is

at most n1/2 · nα−2
2α = n

α−1
α = o(n), so the destination cannot be reached. (Notice that instead of n1/2 and

n
α−2
2α , we could have chosen other values β > 0 and γ > 0 such that the first nβ steps don’t see a link of

length greater than nγ , so long as β + γ < 1.)

Based on simulations, it seems that the behavior is actually worse for α > 2 than for α < 2.
In the analysis, it is important to notice that while, for n → ∞, any poly-logarithmic function is expo-

nentially smaller than any polynomial one, this may not be so for finite, even fairly large, n. Indeed, it has
been verified experimentally that the “correct” exponent α for finite n is α = 2− f(n), where f(n) → 0 as
n → ∞. Determining the exact nature of f(n) is still open. This may also help in explaining the apparent
gap between the short paths observed by Milgram, and the apparently much longer paths guaranteed by our
proof. In addition, our analysis only used one long-range link per node. If nodes have many more long-range
links, the predicted path lengths will be smaller.

While our analysis was done for a 2-dimensional grid, we did not use many properties of it. In fact, the
only property we used was that there were Θ(d2) nodes at distance d from a given one. The analysis extends
easily to r-dimensional grids; the unique exponent for which local routing can be accomplished is then α = r.

It also extends to hirarchical tree structures. For professions or other interests, a grid is perhaps not
the right type of model. Instead, we may consider all professions to form a hierarchy (“scientific” vs. “arts”
vs. “finance” etc., further subdivided into different sciences, subcategories, etc.). Each person is located at
a leaf of this hierarchy, and generates Ω(log2 n) links to other people. The probability of linking to a given
node decreases in the distance between the two nodes in the tree. It can be shown that for an appropriate
choice of distribution, we still obtain local routing, and the distribution is closely related to the one studied
above, in that it satisfies “uniformity over scales”.

Kleinberg [253] proves a more general result for a certain class of set systems which includes metric spaces
that “grow uniformly”. Whether a similar result holds for arbitrary metric spaces is currently open. Watts
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et al. [396] suggest a model wherein multiple metric spaces (or, in their case, hierarchies) combine to create
the link structure. The idea is that links could be caused by proximity in a physical space (like the grid,
above), or in the space of research topics, or others. Thus, the distance between two individuals is their
minimum distance over all of the hierarchies, and individuals know about the hierarchy structure in their
routing decisions. (See also the discussion by Killworth and Bernard [250].) Unfortunately, the result is not
a metric, and it is not clear whether results can be proved formally about this model; Watts et al. based
their investigation on simulations.

7.4 Further Reading

Since the original work by Kleinberg [252] on the algorithmic models, many subsequent papers have studied
generalizations of the models in different respects. Excellent surveys of both the results described above and
much of the follow-up work are given by Kleinberg [254] and Fraigniaud [170].

One of the interesting directions is how much extra knowledge the members of the network need in
order to find (nearly) shortest paths. While we showed above that the greedy algorithms finds paths of
length O(log2 n), these are not necessarily shortest for every pair of nodes. Lebhar and Schabanel [272]
analyze the effects of performing some depth-first exploration of the neighborhood of the current message
holder before actually forwarding the message. They show that this results in much shorter paths of length
O(log n(log log n)2) (for our model of one random link). Manku, Naor, and Wieder [287] show that when
the average degree of nodes is O(log n), by generating each long-range link at distance d independently with
probability 1/d, a mere 1-step lookahead leads to paths of length O(log n/ log log n).

Another popular direction for extensions is to change the underlying graph structure from a grid, or the
precise long-range link distribution. One of the most comprehensive studies of this topic is by Nguyen and
Martel [332], who analyze the diameter of the above model in D dimensions, and show that short paths exist
for any exponent α < 2D, while the diameter is polynomial for α > 2D. (The case α = 2D is currently
open.) They also relate these diameter bounds and greedy routing more generally to expansion properties.

The Watts-Strogatz model for small-world networks can be extended to settings beyond social networks.
For example, Menczer [294] posits a model for generation of web content and links wherein the metric
is obtained by textual similarity of web pages (using standard bag-of-words models), and links follow a
power-law distribution in this metric. He compares the model to real-world data, and infers that it implies
searchability of the Web by greedy algorithms.
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Chapter 8

Diffusion of Information and Influence
in Social Networks

In the first few chapters, we were studying networks mostly as “enhancing” the information stored in them.
In the previous chapter, for the first time, we considered networks as active entities forwarding information
between their nodes. We continue the study of such dynamics in this and the next chapter, focusing on the
interactions between the structure of a network and its role in disseminating information, diseases, data, etc.
As some examples of the types of “things” that spread through a network, consider the following:

Biological Networks : Diseases and mutations. Dominant mutations result in more and more affected
entities from generation to generation, until almost all of the species is affected. Diseases spread through
contact, while mutations spread through natural selection in reaction to evolutionary constraints.

Technological Networks : Viruses and worms, but also power failures or car traffic. Power failures in
a power grid increase the load on other generating stations causing them to also break down, etc
[27, 28, 395]. Congestion on freeways leads to similar behavior, spreading to nearby freeways or
roads by virtue of drivers’ evasive strategies. Viruses or worms directly use human or technological
connections to spread from one host to another.

Social Networks : Rumors or group behavior such as riots. A rumor spreads from person to person until
a large subset of people are aware of it. Similarly, peer pressure or “safety in numbers” entices people
to participate in behavior shared by others, such as rioting [361, 200].

Strategies : as a special case of social networks, some trends, such as cell phone usage or car sizes, spreads
as a result of “strategy optimization” [56, 146, 307, 405]. For example, to not be at a disadvantage
on the road with bigger cars like SUVs around, people themselves need bigger cars. Similarly, once
more others have adopted a new innovation, such as a new media format, it may become beneficial or
necessary to adopt it also [222].

The common thread of all of these examples is that a new behavior or piece of information starts out
with one or a few individuals, and gradually propagates through the network to (sometimes) reach a much
larger number eventually.

In order to analyze these types of dynamics, we need to first define a model for the effect of the network
on individuals’ behavior. Here, we can draw on several decades worth of work in sociology, biology, and
economics.

8.1 The Bass Model for Innovation Diffusion

While there had been many empirical studies of the diffusion of technological innovations in society (see,
e.g., [111, 355], or [77] for a study of the relationship between innovation diffusion and strength of ties [199]),
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perhaps the first descriptive mathematical model is due to Bass [40]. It is similar to standard models for
epidemic diseases [31, 133]. The presentation here is inspired by that of Jackson [225].

The population is assumed to be infinite and mixed, i.e., each individual is equally likely to interact with
each other individual. Two different types of “pressure” affect individuals: mass communication such as
advertising, and word-of-mouth interactions with others who have adopted the innovation already.

Specifically, assume that an individual has not yet adopted the innovation. In each “time step”, he will
be convinced by the “mass marketing” with probability p. In addition, he may meet another individual who
has already adopted the innovation. In that case, he will adopt the innovation with probability q. (Let’s
assume that q = (1−p)q′, i.e., q accounts only for the case when the individual has not adopted the product
due to mass marketing.) If at time t, an N(t) fraction of the population have already adopted the innovation,
then the meeting probability is N(t) for any individual. Thus, the individual’s probability of adopting is
p + q ·N(t). Since the fraction of individuals for which this calculation applies is 1 −N(t), we obtain that
the increase in the fraction of adopting individuals at time t is (1−N(t)) · (p+ q ·N(t)). This leads to the
differential equation

dN(t)
dt = (1−N(t)) · (p+ q ·N(t)).

This differential equation can then be solved, and the effects of varying p and q (as well as other assump-
tions) can be studied. Following the initial work of Bass [40], there has been a long line of extensions and
variation. See, for instance, [283, 384].

8.2 Schelling’s model for segregation

The Bass model assumes a homogeneous population, and furthermore assumes that each individual is equally
likely to meet each other individual. Thus, it does not take any network structure into account. One of the
first models to explicitly consider network structure in such behavior at a population scale was Schelling’s
model for segregation [361]. Schelling was motivated by the question: why is it that most neighborhoods
are very uniform (racially, and in other respects), even though most people profess that they would prefer
to live in a diverse community?

Schelling proposed the following model: Assume that roughly n2

2 individuals live on an n× n grid. Each
node wants to make sure to not be completely isolated (the odd person in a community): formally, if less
than an ε fraction of v’s neighbors (in a small ball around v) are of the same color as v, then v is unhappy
and moves to a spot where it is not unhappy (say, the closest, or a random, such spot).

What Schelling observed was that even with a relatively small value of ε ≈ 1
3 , neighborhoods end up

mostly segregated: when the process quiesces, about 4
5 of each node’s neighbors are of the same color as the

node itself.
While this result has been verified experimentally, obtaining provable results has been much harder.

Some non-trivial results were obtained by Brandt et al. [72] for the one-dimensional case, and Immorlica et
al. [223] for two dimensions.

8.3 Granovetter’s threshold model

Schelling’s model addresses one shortcoming of the Bass model: the assumption of a uniformly mixed
population. However, it still assumes that all individuals act the same. Granovetter [200], motivated by
the study of outbreaks of riots or other collective behavior, notices that cities or neighborhoods with very
similar statistical demographics often tend to exhibit very different overall behavior of a riot or similar event.
Thus, he concludes that an accurate description of group behavior is impossible in terms of merely high-level
statistical data, and needs to take individuals’ tendencies into account.

[200] therefore proposes a threshold model which has formed the basis of much subsequent work. The
simplest version can be described as follows: Each individual (node) has a threshold tv. If tv other nodes
are already active (have adopted the behavior, such as starting to riot, or using a cell phone), then v joins
(becomes active).
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As an example, consider the case of 100 people present in a city square in a tense environment, where
the threshold of node vi is i (tv0

= 0, tv1
= 1, . . . , tv99

= 99). In this case, v0 becomes active first, followed
by v1, etc., until the entire population ends up active. On the other hand, if we make a small change and
set tv1

= 2, only node 0, and no other node, becomes active, even though 99 of the 100 nodes have the same
thresholds as before. While this example may be a bit contrived, it clearly shows that the outcome of such
a process can change dramatically even when the setup is almost identical.

One of the first questions we may wish to answer about this model is: given the nodes’ thresholds, can we
predict how many nodes will be active in the end. We can define F (x) = |{v | tv < x}|. Then, the number
of active nodes is the smallest x with F (x) ≤ x. Figure 8.1 shows the plot of F (x) vs. x. The vertical lines
denote the number of nodes active after 0, 1, . . . time steps. The number of nodes that will be active in the
next time step is then F (F (x)), which we can determine pictorially by moving horizontally to the diagonal,
and then vertically to the next intersection with F (x). The process then quiesces at the first point for which
the function F crosses the diagonal, as that is a fixed point.

x

F (x)

y = x

0

1

2

3

4

Figure 8.1: The threshold process and its dependency on F (x)

The threshold values we used in our introductory example were clearly somewhat contrived. Instead, we
may wonder what happens when the values are drawn from a more “reasonable” distribution. For instance,
we may assume that the thresholds are distributed as Gaussians, with mean, say, n

4 and variance σ2. We
could then investigate what is the result of varying σ2, i.e., making the thresholds more or less sharply
concentrated.

For small σ, almost no nodes end up active, because almost no thresholds will be 0 or close to 0. As
σ is increased, there is a phase transition from almost no one active to almost everyone active. A further
increase of σ leads to a slight drop, steadying around n

2 .

Granovetter’s threshold model is clearly very simple. We could make it more interesting and realistic in
several ways:

Graphs : We assumed that all nodes affect all other nodes. In a large social network, this is certainly not
true. We may consider a graph in which nodes can only affect their neighbors.
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Weights : The model of graphs can be further generalized. In our model so far, each node is influenced
equally by all of its neighbors. Instead, each edge in the graph could have a weight associated with it,
representing how much influence one endpoint has over the other. (Edges may be directed, and have
different weights in both directions.)

Probabilistic activations : In real world scenarios, some nodes may fail in activating their neighbors. This
can be modeled using probabilities on activations. The resulting model may be somewhat different
from Granovetter’s. (A simple model is described by Goldenberg et al. [189, 188].)

Non-monotonic behavior : In many scenarios, a large rate of “participation” may discourage nodes from
being active. For instance, a new fashion trend, initially spread by copying behavior, may become
uninteresting to the trend-setters if many others are following it. As a result, in addition to the
activation threshold t1,v, we would have a deactivation threshold t2,v > t1,v: if more than t2,v nodes
are active, then v becomes inactive again. In its most general version, this model subsumes cellular
automata and the game of life (and hence, can simulate computation).

Deriving thresholds : So far, we assumed that the thresholds are known. Actually obtaining or estimating
these data is an interesting question, and may be partially amenable to data mining techniques. (In
the absence of more information, we may assume that thresholds are random, or all identical, but this
is only a very crude approximation.) One interesting way to derive thresholds in the strategic settings
described earlier is to cast them in terms of the underlying game played by the nodes, e.g., weighing
the costs and benefits of a larger car depending on the number of other people having large vs. small
cars.

Starting or preventing cascades : Understanding a model is usually only the first step towards acting
on it. In the above scenarios, we may be interested in containing the spread of an epidemic, computer
virus, or power failure, or promote the adoption of a product.

8.4 The Contagion model

In investigating the problem of starting or preventing cascades, a first question we may want to answer
is how many nodes it takes to infect the entire graph. This leads us to a question considered by Morris
[307]. His model is as follows: the graph G is assumed to be infinite, but each vertex has finite degree. All
vertices have the same threshold p ∈ [0, 1]: here, this means that they become active if at least a p-fraction
of their neighbors is active. (Notice that the number of neighbors may be different for different nodes, but
the fraction is the same).

These thresholds can be derived through a coordination game as follows [146]: Suppose that we have the
following payoff matrix with q ≥ 1

2

inactive active
inactive 1− q, 1− q a, b
active b, a q, q

meaning that if both players are inactive, they each get a payoff of 1 − q (for instance, by communicating
with some old technology). If both are active, they each get a payoff of q ≥ 1 − q, having switched to the
new technology. When player 1 is using the old technology, and player 2 the new technology, their respective
payoffs are a and b; usually, we would assume that a < 1 − q and b < q, since the players may be less able
to communicate or share technology. (An important special case is a = b = 0, meaning that the players
cannot communicate using different technology or languages.) Then, a node v with d neighbors, of whom r
are active, will prefer to be active if and only if rq+ (d− r)b > ra+ (d− r)(1− q), or r > 1−q−b

1−(a+b) · d. Thus,
we have derived 1−q−b

1−(a+b) as an activation threshold.

A set X ⊂ V is called contagious, if starting from X, all nodes are activated eventually. The contagion
threshold t(G) is the supremum of all p such that there exists a finite contagious set for threshold p.
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In looking for obstacles to a set X being contagious, we notice that each node that is not infected must
have at least a 1− p fraction of its edges to other uninfected nodes. Hence, if X∗ denotes the set of all nodes
reached from X, then V \X∗ is a (strong) (1− p)-community in the sense studied in Section 3.2.

We define the community threshold c(G) to be the infimum over all α such that every cofinite1 set of
nodes contains an infinite (1−α)-community. Our main theorem is the following, verifying that communities
are indeed the only obstacles to epidemics.

Theorem 8.1 c(G) = t(G).

Proof. The normal way to prove an equality is to prove both inequalities c(G) ≤ t(G) and c(G) ≥ t(G).
As both quantities are defined in terms of infimum/supremum, this direct approach will not work as easily.
Instead, we will show for each p that c(G) < p if and only if t(G) < p.

For any node set S ⊆ V (G) and node threshold p ∈ [0, 1], we let fp(S) be the set of nodes active after one
step if exactly the set S is active previously, and all nodes have threshold p. Define fk

p (S) := fp(f
k−1
p (S))

inductively to be the set of nodes active after k steps (with f0
p (S) := S, of course).

1. Assume that c(G) < p. By definition of the community threshold, this means that every cofinite set S
contains an infinite (1− p)-community.

Let X be an arbitrary finite set. Then, V \ X is co-finite, and thus contains an infinite (1 − p)-
community C. Because C ∩X = ∅, induction on the number of steps k shows that no node from C is
ever active. Hence, X cannot be contagious, and because X was an arbitrary finite set, we have proved
that t(G) < p.

2. Assume that t(G) < p. Let S be a co-finite set, so V \ S is finite. Therefore, by assumption, it is not
contagious for parameter p. Let Y :=

⋃

k≥0 f
k
p (V \ S). Then, Y is a (1− p)-community, as each node

of Y must have strictly less than a p fraction of its edges to nodes from Y . Moreover, Y is infinite, for
otherwise, Y ∪S would be a finite contagious set, a contradiction. Hence, every co-finite set S contains
such an infinite (1− p)-community Y .

Next, we would like to know how large contagion thresholds can possibly be supported by any graphs.
We will show that 1

2 is the limit:

Theorem 8.2 There is no graph G with t(G) > 1
2 .

Proof. For a set S, let φ(S) := |δ(S)| be the number of edges leaving S. For i ≥ 0, let Si denote the set
of infected nodes after i rounds. Observe that if at any point Si = Si+1, then clearly the infection process
has terminated, as no new nodes can ever be activated.

Let p > 1
2 be arbitrary, and S0 a finite set starting out infected. Consider the sequence φ(Si), i ≥ 0, the

number of edges leaving the infected sets in each iteration. When node v moves from Si to Si+1 (i.e., v gets
infected in the ith step), node v has strictly more edges into Si than into Si, because p > 1

2 . In the (i+ 1)st

iteration, all the edges from v to Si are not cut any more, whereas those from v to Si+1 are cut. Summing
over all v, φ strictly decreases in each iteration in which nodes become infected. Because S0 is a finite set,
and each node has finite degree, φ(S0) too must be finite. Therefore, φ can only decrease a finite number
of times, and Sk = Sk+1 for some k. As only finitely many nodes become infected each round, only finitely
many nodes will become infected eventually. This holds for any finite set S0, and any p > 1

2 ; therefore, the
contagion threshold t(G) cannot exceed 1

2 .

In view of the above fact, a natural question to ask is which graphs have t(G) close to 1
2 . We begin with

some definitions.

1A cofinite set is a set whose complement is finite.
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A labeling of a graph G is a bijection λ : N→ V . A labeling λ for G is p-inductive with parameter k0 ∈ N

if for all k ≥ k0, each node λ(k) has at least a p-fraction of edges to λ(0), . . . , λ(k − 1). We define ℓ(G) to
be the supremum over all p such that G has a p-inductive labeling. This new measure is again equal to the
contagion and community thresholds.

Theorem 8.3 ℓ(G) = t(G).

Proof. Start with nodes λ(0), . . . , λ(k0) infected. Then, by definition of p-inductiveness, all subsequent
nodes will become infected at threshold p. Similarly, the order in which nodes become infected can be used
as a labeling, which is easily seen to be p-inductive.

A BFS-labeling is a labeling λ for graph G consistent with the BFS traversal of G from some finite node
set X. It is δ-smooth for parameters p and k0 if all nodes λ(k) for k ≥ k0 have between a (p − δ)-fraction
and a p-fraction of edges to λ(0), . . . , λ(k − 1). Also, recall that a graph G has subexponential growth if for
all c > 1 and all finite sets X, the ball sizes are |Br(X)| = o(cr). (Where Br(X) := {u | d(u,X) ≤ r} is the
set of all nodes at distance at most r from X.)

Theorem 8.4 If a graph G has subexponential growth and a δ-smooth BFS-labeling, then t(G) ≥ 1
2 − δ

Notice that this is not an “if and only if” statement. For instance, consider the grid with sufficiently large
neighborhood circles, and add one random edge per node. For purposes of infection, this graph acts very
much like the grid (as most edges are grid edges). However, as we discussed in Section 7.3, this graph has
exponential growth. Indeed, one might consider a definition of “small world” graphs to have both exponential
growth and t(G) close to 1

2 .

Proof. We will show that the labeling must have p = 1
2 . Then, because the labeling is 1

2 − δ inductive,
Theorem 8.3 implies the result. We prove the statement by contraposition: if p < 1

2 , then the graph must
have exponential growth. Consider a BFS consistent with λ. For each v, let f(v) be the number of edges
between v and nodes u with lower labels, and g(v) the number of edges between v and nodes u with higher
labels.

By definition, f(v) ≤ p(f(v) + g(v)), so g(v) ≥ 1−p
p · f(v). Let Lr = {u | d(X, v) = r} be the rth

layer of the BFS from X. We denote the edges within Lr by Ir, and the edges from Lr−1 to Lr by
Fr. Then,

∑

v∈Lr
f(v) = |Ir| + |Fr| (counting each edge towards the value of the higher endpoint), and

∑

v∈Lr
g(v) = |Ir|+ |Fr+1| (counting edges for lower endpoints). Combining this with the inequality between

f(v) and g(v), we obtain that |Ir|+ |Fr+1| ≥ 1−p
p · (|Ir|+ |Fr|), which we can rearrange to obtain

|Fr+1| ≥ 1−2p
p · |Ir|+ 1−p

p · |Fr| ≥ 1−p
p · |Fr|,

because 1−2p
p ≥ 0. Therefore, the sizes of Fr grow exponentially, and since the nodes have finite degrees, the

number of vertices in the rth layer must also grow exponentially.

8.5 A non-monotone infection model

In the previous section, we began an investigation of models for the spread of infections on graphs. We
assumed the following notion of monotonicity : once a node becomes infected, it stays infected. For certain
types of diseases or behaviors, this model may be very accurate. For others, nodes will reevaluate their
choice in every time step, based on the choices of their neighbors. A natural modification of the previous
model posits that if in the previous time step, at least a p fraction of a node’s neighbors are infected, then
the node will be infected in the next step, and otherwise, it will not.

In thinking about this new definition, a first question is whether any infinite graphs can be infected
starting from a finite set of infected nodes. It is pretty easy to see that the answer is “Yes”: if we start
with two adjacent infected nodes on the infinite line, and p < 1

2 , then the entire line will eventually become
infected. In fact, for infinite graphs, Morris [307] showed the following lemma:
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Lemma 8.5 If the (infinite) graph G has a (finite) contagious set with threshold p in the monotone model,
then it also has a finite contagious set with the same threshold in the non-monotone case. The starting set
in the non-monotone case will be the union of the starting set of the monotone case and its neighborhood.

Notice that our example of an infinite graph with finite infectious set crucially used that p < 1
2 . It seems

much more difficult to come up with examples having p ≥ 1
2 . In fact, is not even obvious how to construct

arbitrarily large finite graphs that can be infected by a small set of nodes.

For the monotone case, the question with finite graphs is easy: take a star graph with threshold 1/2,
and start with just the center node infected. However, in the non-monotone case, this graph will end up
oscillating with period 2, between the center node infected, and all leaf nodes infected. In fact, this is far
from accidental: the following is a corollary of slightly more general results of Goles and Olivos [190] and
Poljak and Sura [342].

Theorem 8.6 ([190],[342]) In the non-monotone case for a finite graph, the infection either converges, or
oscillates with a period of 2.

This result has been extended to infinite graphs by Moran [306] and Ginosar and Holzman [185]. They
show that it is sufficient (and necessary) that the infinite graph have universally bounded degrees and sub-
exponential growth in the sense defined above. Under these conditions, Moran [306] showed that any state
that is part of a cycle of state is part of a cycle of length 2. Ginosar and Holzman [185] showed that each
node in isolation will eventually enter a cycle of length 2. However, even for the infinite path in which all
odd nodes and 0 have an initial state of 1, no global periodic state will ever be reached.

Returning to the question of the existence of small infectious sets for arbitrarily large graphs, Berger [42]
answered it in the affirmative for p = 1

2 .

Theorem 8.7 (Berger [42]) There are arbitrarily large graphs that can be infected (in the non-monotone
case) with p = 1

2 and a starting set S with |S| ≤ 18.

At this point, it is open whether such finite infectious sets exist for p > 1
2 . However, we have the following

partial result, showing that arbitrarily large p will not work.

Lemma 8.8 It is impossible to infect arbitrarily large graphs if p > 3/4.

Proof. We denote by At the set of nodes active in round t, and write It := At ∩At−1 for the set of nodes
active both in rounds t and t− 1. Then, let St :=

⋃

t′≤t It′ be the set of nodes which were active in any two
consecutive rounds up to and including round t. Finally, let δ(St) be the set of edges leaving the set St, and
σt := |St|+ |δ(St)|.

We will show that if we start with c nodes active, then σt = O(c2) for all t. For this purpose, we show
that σ1 = O(c2), and that σ is a non-increasing function of t.

For the case t = 1, notice that S1 = A0 ∩ A1 ⊂ A0. Thus, |S1| ≤ c. Since each v ∈ S1 is active at time
t = 1, its degree can be at most 4

3c (for at least 3
4 of its neighbors must be in A0). Thus, the sum of all

degrees in S1 is at most c · 43c, which is O(c2).

To show that σt+1 ≤ σt, consider any node v ∈ St+1 \ St. Due to the addition of v, the |St+1| term of
σt+1 increases by one. On the other hand, because v ∈ At+1 ∩At, more than 3

4 of v’s neighbors were active
at time t, and also at time t− 1. Thus, more than half of v’s neighbors are active both at times t and t− 1,
i.e., they are in At∩At−1 ⊆ St. For each of those neighbors u ∈ It, there was an edge (u, v) ∈ δ(St), whereas
(u, v) /∈ δ(St+1) any more. For each neighbor u /∈ It, we introduced at most one new edge into δ(St+1) (or
none, if u was also added to St+1). Since there are strictly fewer neighbors not in It than neighbors in It,
|δ(St)| decreases by at least 1 for each node v ∈ St+1 \ St. Therefore, σ cannot increase overall.
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8.6 Causing a large spread of an infection

So far, the results we studied were existential. We showed that there are large graphs that can be infected
(in various models) by a small set of initial nodes. From a practical point of view, a much more relevant
question is how to reach as many nodes as possible in a given graph. Naturally, this question has applications
in using network effects for the purpose of marketing. More formally, we can look at the following question:
Given a number k, which set S with |S| ≤ k will eventually infect as many nodes of G as possible?

As an optimization problem motivated by viral marketing, this question was first suggested by Domingos
and Richardson [137, 353], who studied it first [137] for a very general model in terms of Markov Random
Fields (see Section 4.1), and then for a much more restricted linear model [353]. Unluckily, even in the
Morris Contagion model from Section 8.4, this problem not only is NP-hard, but also hard to approximate.

Lemma 8.9 Unless P = NP , the above problem cannot be approximated to within O(n1−ǫ) for any ǫ > 0.

Proof. We prove this with a reduction from Set Cover: Given sets S1, . . . , Sm, each a subset of {1, . . . , n},
and a number k ∈ N, are there k sets Si whose union is the entire set?

For the reduction, we create a directed graph as follows: Let {s1, s2, . . . , sm} be nodes corresponding to
the m subsets and {u1, u2, . . . , un} be nodes corresponding to the n elements. Our construction will ensure
that ui becomes active when at least one of the nodes corresponding to sets containing ui is active. We
achieve this by connecting each sk to the ui’s in it, and setting a threshold of 1/m for each ui. Next, for a
large constant c, we add N = nc more nodes {x1, x2, . . . , xN}. Each xj is connected to all of the nodes ui,
and it becomes active only when all of the ui are (i.e., the xj have a threshold of 1). The construction is
depicted graphically in Figure 8.2.
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Figure 8.2: Construction for proving hardness of approximation

If there are at most k sets that cover all elements, then activating the nodes corresponding to these k
sets will activate all of the nodes ui, and thus also all of the xj . In total, at least N + n + k nodes will be
active. Conversely, if there is no set cover of size k, then no targeted set will activate all of the ui, and hence
none of the xj will become active (unless targeted). (Here, we are using implicitly that k < n. If k ≥ n,
then it is trivial to decide if all sets can be activated, for a Greedy Algorithm that adds sets to activate at
least one more node in each iteration will work.) In particular, fewer than n+ k nodes are active in the end.
If an algorithm could approximate the problem within n1−ǫ for any ǫ, it could distinguish between the cases
where N + n + k nodes are active in the end, and where fewer than n + k are. But this would solve the
underlying instance of Set Cover, and therefore is impossible assuming P 6= NP .
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Notice that this proof can be modified to deal with uniform thresholds, by adding more nodes.

In the Morris model, the problem thus turns out to be completely intractable. Yet, we may be interested
in finding models that are more amenable to approximation. One small modification that turns out to make
a significant difference is to assume that the thresholds are uniformly (and independently) random instead
of deterministic. Thus, we obtain a model where each edge has a weight we ≥ 0 such that

∑

e into v we ≤ 1.
Each node v independently chooses a threshold θv ∈ [0, 1] uniformly at random. The goal is to choose a set
S with |S| ≤ k reaching as large a set as possible in expectation (over the random choices of θv). We define
f(S) to be objective function, i.e., the expected size of the finally infected set if we start with set S infected.
The following theorem is the main result for this section:

Theorem 8.10 There is a 1− 1
e approximation algorithm for the problem of selecting the set S maximizing

f(S).

In fact, a simple greedy algorithm will give us the desired guarantees:

Algorithm 5 The simple greedy algorithm

1: Start with S = ∅.
2: for k iterations do
3: Add to S the node v maximizing f(S + v)− f(S).

The proof of the performance guarantee consists of three parts, captured by the following lemmas.

Lemma 8.11 A node v approximately maximizing f(S + v)− f(S) can be found in polynomial time.

Lemma 8.12 f is a non-negative, monotone and submodular function of S.

Recall that a function on sets is monotone if f(S′) ≥ f(S) whenever S′ ⊇ S, and submodular (having
diminishing returns) if f(S′∪{x})−f(S′) ≤ f(S∪{x})−f(S) whenever S′ ⊇ S. Equivalently, submodularity
is characterized by the condition that f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for all sets S, T . Also notice that
the non-negativity and monotonicity of f are obvious.

Lemma 8.13 (Nemhauser/Wolsey/Fischer [117, 317]) If f is a non-negative, monotone and submod-
ular function, then the greedy algorithm is a (1 − 1

e )-approximation for the problem of maximizing f(S)
subject to the constraint that |S| = k.

8.6.1 Proof of Lemma 8.13

We begin by proving the last lemma, which is naturally useful for other problems as well (such as Set

Cover), and has developed into somewhat of a workhorse for many optimization tasks in machine learning.

Proof of Lemma 8.13. Let v1, v2, . . . , vk be the nodes selected by the greedy algorithm (in the order
in which they were selected), and write Si = {v1, v2, . . . vi}. Then, the marginal benefit derived from the
addition of element vi is δi = f(Si)− f(Si−1). Let T be the optimal solution, and Wi = T ∪ Si.

First, the monotonicity of f implies that f(T ) ≤ f(Wi) for all i. Because the algorithm chooses to add
the best available node in the (i + 1)st iteration, and the benefit of any elements added later cannot be
greater by submodularity, the total objective value for the set Wi is at most f(Wi) ≤ f(Si) + kδi+1, and
thus also f(T ) ≤ f(Si) + kδi+1.

Solving this for δi+1, and using that f(Si+1) = f(Si)+δi+1 now shows that f(Si+1) ≥ f(Si)+
1
k · (f(T )−

f(Si)). We will prove by induction that f(Si) ≥ (1− (1− 1
k )

i) · f(T ). The base case i = 0 is trivial.
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For the inductive step from i to i+ 1, we use the above inequality to write

f(Si+1) ≥ f(Si) +
1

k
· (f(T )− f(Si))

= (1− 1

k
)f(Si) +

1

k
· f(T )

IH
≥ (1− 1

k
)(1− (1− 1

k
)i) · f(T ) + 1

k
· f(T )

= (1− 1

k
− (1− 1

k
)i+1 +

1

k
) · f(T )

= (1− (1− 1

k
)i+1) · f(T ),

completing the inductive proof. Using the fact that (1− 1
k )

i ≥ 1/e for all i ≤ k, we obtain that the algorithm
is a (1− 1/e)-approximation.

8.6.2 Proof of Lemma 8.12

In order to prove Lemma 8.12, we first observe that monotonicity of f is trivial. We then focus on a simpler
model (proposed by Goldenberg et al. [189, 188] in the context of viral marketing) to illustrate the concepts
of the proof.

Definition 8.14 (Independent Cascade Model) Given a complete directed graph G with edge probabil-
ities pe, we consider an infection model where once a node u becomes active, it infects a neighboring node v
with probability p(u,v). If the attempt succeeds, v becomes active; u, however, does not get to try infecting v
again.

We can observe that for each edge e, we can decide ahead of time (randomly) if the activation attempt
will succeed when/if it happens, with probability pe. We observe that, in the graph G of “successful edges”,
the nodes active in the end are exactly the ones reachable from S.

As a first step, we will show that the number of reachable nodes in a given graph G is a submodular
function. We define fG(S) to be the number of nodes reachable from S in G, and prove

Claim 8.15 fG is submodular for all G.

Proof. We need to show that fG(S ∪ {x}) − fG(S) ≥ fG(S
′ ∪ {x}) − fG(S

′) whenever S ⊆ S′. We write
RG(S) for the set of all nodes reachable from S in G. Then, fG(S) = |RG(S)|, and because any node
reachable from S ∪ {x}, but not from S, must be reachable from x, we can observe that

|RG(S ∪ {x})| − |RG(S)| = |RG(S ∪ {x}) \RG(S)| = |RG({x}) \RG(S)|.

By monotonicity of RG, we have that RG({x}) \ RG(S) ⊇ RG({x}) \ RG(S
′), so |RG({x}) \ RG(S)| ≥

|RG({x}) \RG(S
′)|, which proves submodularity of fG.

From the submodularity for any fixed graph, we would like to derive that the same holds for the function
f , over randomly chosen graphs. To that end, we use the following useful way of rewriting a random variable’s
expectation E [X]: If {E1, E2, . . . , Em} is a partition of the probability space Ω, and X is a random variable
on Ω, then:

E [X] =
∑

i Prob[Ei] · E [X | Ei] .
In our case, the random variable X is the number of nodes reached from S, and f(S) = E [X] is its

expectation. Let G1, . . . , Gm be an enumeration of all graphs on n nodes (note that m is large). Notice
that the events Ei = [G = Gi] form a partition of the probability space we are considering. Thus, the
above identity implies that f(S) =

∑

i Prob[G = Gi] · fGi
(S). Because all the coefficients Prob[G = Gi] are

non-negative, and each fGi
is submodular, the submodularity of f now follows from the following
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Fact 8.16 A non-negative linear combination of submodular functions is itself submodular.

Proof. Let αi ≥ 0 for all i, and f =
∑

i αifi. If each fi is submodular, then for all S ⊆ S′,

f(S ∪ {x})− f(S) =
∑

i

αifi(S ∪ {x})−
∑

i

αifi(S)

=
∑

i

αi(fi(S ∪ {x})− fi(S))

≥
∑

i

αi(fi(S
′ ∪ {x})− fi(S

′))

= f(S′ ∪ {x})− f(S′).

Notice that we did not use a lot of properties of the Independent Cascade Process. In fact, we proved
the following stronger lemma:

Lemma 8.17 If the activation process is such that we can define a distribution on graphs {Gi} such that
f(S) equals the expected number of nodes reachable from S under the distribution, then f is submodular.

We would like to use this lemma to prove submodularity for the Linear Threshold Model that we started
out with. In order to do that, we need to come up with a distribution over graphs such that the requirements
of the lemma are met. In this case, it is not as obvious which distribution to chose, but we will be able to
show that the following model works:

Definition 8.18 (Random Graph Model) Each node v has at most one incoming edge which emanates
from u with probability w(u,v), the weight of the influence of u on v. (Recall that

∑

u w(u,v) ≤ 1 for all v).
With probability 1−∑u w(u,v), v has no incoming edge.

Claim 8.19 This model is equivalent to the Threshold Model, in the sense that the expected number of nodes
reached is the same.

Proof. We will prove by induction on t that for each time step t ≥ 0, and any node sets T ⊆ T ′, the
probability that exactly T is active at time t and T ′ at time t+ 1 is the same in both the threshold and the
random graph processes.

In the base case t = 0, the probability is 1 for the pair (∅, S) for both processes, and 0 for all other pairs,
because both processes start with only the selected set S active.

For the inductive step, assume that T ⊆ T ′ are the active sets at time t − 1 and t, and consider some
node v /∈ T ′. We investigate the probability that v becomes active at time t+ 1 in either process.

In the threshold model, because v was not active at time t, we know that θv ≥
∑

u∈T w(u,v). However,
subject to that, θv is still uniformly random, so by the Principle of Deferred Decisions, we can re-choose θv
uniformly at random from the interval (

∑

u∈T w(u,v), 1].

v becomes active at time t+ 1 iff θv ≤
∑

u∈T ′ w(u,v). This happens with probability,
∑

v∈T ′\T w(u,v)

1−∑
u∈T w(u,v)

.

Now, let us look at the probability that v /∈ T ′ becomes active at time t+1 in the random graph process.
Because v is not active at time t, we know that v’s incoming edge, if any, does not come from T . Thus, v
becomes active at time t+ 1 iff the edge comes from T ′ \ T .

The probability that v’s edge does not come from T is 1−∑u∈T w(u,v), and the probability that it comes

from T ′ \ T is
∑

u∈T ′\T w(u,v). Hence, the conditional probability of v becoming active is
∑

u∈T ′\T w(u,v)

1−∑
u∈T w(u,v)

.

So for any individual nodes, the probability of activation at time t+1 is the same under both processes.
As these decisions are independent in both processes (thresholds resp. edges are chosen independently), the
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probability that exactly all nodes from W become active is the same under both processes for any set W .
So

Prob[〈T ′, T ′′〉 active at time 〈t, t+ 1〉]
=

∑

T

Prob[〈T, T ′〉 active at time 〈t− 1, t〉] · Prob[exactly T ′′ \ T ′ becomes active | T ′ active at time t]

is the same for both. Hence, by induction, the processes behave the same, and in particular, the final
expected number of activated nodes is the same.

Notice that combining all of the above, we have established Lemma 8.12, i.e., the fact that f is submod-
ular.

8.6.3 Proof of Lemma 8.11

It remains to show how to find, in polynomial time, a node giving largest marginal gain at any point. In fact,
finding the node of largest marginal gain is too much to hope for — as shown in [392] (Independent Cascade
Model) and [97] (Linear Threshold Model), it is #P-hard to evaluate the objective function, and thus also
to compute the node with largest marginal gain. However, we can establish a slightly weaker fact, which is
sufficient for our purposes. As stated in Lemma 8.11, we can find, in polynomial time, a (1−ǫ)-approximately
best node to add.

Proof of Lemma 8.11. First, we describe an algorithm for estimating the marginal gain of adding a node.
If we can get sufficiently accurate estimates for each node, then a choice based on these estimates will give
us an approximately best node.

The algorithm is simply to simulate the random process multiple times, and take the average of the
number of additional nodes reached over all these simulations. This average will certainly in the limit
converge to the expectation, but the question is how quickly, i.e., how often is “multiple” times? If some
“gain values” had very low probability of occurring, but were extremely high, then we may need a large
number of simulations to get a good estimate. Fortunately, in our case, the values we sample have a natural
upper bound of n, the number of nodes. We will see that the number of iterations will not need to be very
high as a result.

Formally, we will use the Chernoff-Hoeffding Bound, as given by the following theorem.

Theorem 8.20 (Chernoff-Hoeffding Bound [215, 290]) If X1, . . . , Xm are independent random vari-
ables with 0 ≤ Xi ≤ bi for all i, and X =

∑

i Xi, and µ = E [X], then for all ∆ ≥ 0,

Prob[|X − µ| ≥ ∆] ≤ 2e
−∆2
∑

i b2
i .

In our case, we let Xi be the outcome of the ith simulation. Thus, 0 ≤ Xi ≤ n for all i, so bi = n. Also,
because at least one node is active in each outcome (the start node itself), we have that Xi ≥ 1, and thus
µ ≥ m. Choosing ∆ = ǫµ, we obtain that

Prob[|X − µ| ≥ ǫµ] ≤ Prob[|X − µ| ≥ ǫm] ≤ 2e
−(ǫm)2

mn2 = 2e
−ǫ2m

n2 .

Thus, if we are aiming for a (1± ǫ)-approximation with probability at least 1−δ, it is sufficient to require

that 2e
−ǫ2m

n2 < δ. Solving for m gives that m > n2

ǫ2 log 2
δ simulations are sufficient. By a Union Bound over

all (at most n) iterations of the greedy algorithm, and all n nodes in each iteration, all simulations have
error at most ǫ with probability at least 1− n2δ.

If we want, for instance, success probability at least 1− 1
n2 , we can choose δ = 1

n4 , and then, we need to

run O(n
2

ǫ2 log n) iterations to get a (1± ǫ) accurate estimate.
It still remains to verify that we actually obtain a close to best node when picking a node based on

ǫ-estimates. In the worst case, the picked node’s gain is over-estimated by a factor of (1 + ǫ), while the true

92



best node’s gain is under-estimated by a factor of (1−ǫ). But because the picked node appeared to be better,

its gain must have been within a factor of (1−ǫ)
(1+ǫ) ≥ 1−2ǫ of the best node’s. So we have a (1−2ǫ)-approximate

best node in each iteration, in polynomial time.

By essentially mimicking our earlier proof of the Nemhauser-Wolsey-Fischer theorem, we can show the
following stronger version:

Theorem 8.21 If we choose a (1− ǫ)-approximate best node in each iteration of the greedy algorithm, then
we get a 1− 1

e − ǫ′ approximation algorithm, where ǫ′ → 0 as ǫ→ 0, polynomially fast.

8.6.4 More General Diffusion Models

We just showed that two natural models for influence propagation — the Independent Cascade Model of
Goldenberg et al. [189, 188] and a variant of the Linear Threshold Model of Granovetter [200] — lead to
submodular overall influence functions, and thus a 1− 1/e approximation algorithm. A natural question is
then which other models permit such approximations.

Initial progress was made on this question in [244]. There, it is shown that a generalization of the cascade
model still leads to submodularity. The probability of activation success pu,v(A) along an edge (u, v) may
depend on which other nodes A have previously tried (and failed) to activate v. However, the probability
pu,v(A) must be non-increasing in A, i.e., the marginal probability of success decreases. [244] shows that this
condition is sufficient to yield submodularity. Interestingly, it is also shown that for this model, there may
be no graph distribution yielding the same expected number of active nodes. Hence, [244] uses a different
technique for proving submodularity.

The result from [244] is further generalized in a beautiful result of Mossel and Roch [313]. They consider
a generalization of the threshold model, where each node v has a local threshold function fv(A), and becomes
active when fv(A) ≥ θv, where A is the set of previously active nodes. Thus, the linear threshold model is
the special case where fv(A) =

∑

u∈A wu,v. Mossel and Roch resolve the following conjecture of [245]:

Theorem 8.22 ([313]) If each fv is non-negative, monotone non-decreasing, and submodular, then so is
the overall activation function.

The proof is by a more intricate coupling argument in the style of our proof of Claim 8.19. It uses the
following alternative characterization of submodularity: a function f is submodular if and only if for all sets
A,B:

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B). (8.1)

The first key lemma states that initial activations can be deferred without changing the outcome of the
process. More formally, this is expressed by the following lemma from [244, 313]:

Lemma 8.23 Let S = S1 ∪ S2 ∪ · · · ∪ Sr be a partition of the seed set. Let the random variable T be the
set of nodes activated at the end of the generalized threshold process if S is the initial active set of nodes.
Define the random variable T ′ by the following process: first activate S1 and let the process quiesce (i.e., no
new activations occur); then activate S2 and let the process quiesce again; do this for all Si in order. Let the
random variable T ′ be the final active set after the process has quiesced.

Then, T and T ′ have the same distribution.

Proof. The lemma should be “intuitively clear,” because the threshold process does not depend on any
order, and all initial seeds will be added eventually. To prove it more formally, we can use the obvious
coupling between the two random processes. Consider the original process T0, T1, T2, . . . , T , starting with
T0 = S active, and the “piecemeal” process T ′

0, T
′
1, T

′
2, . . . , T

′ which adds sets Si one by one at some times t
along the way. For both processes, consider the same thresholds θv at all nodes.

First, because all activation functions are monotone, and the S-process starts with a superset of nodes
(and any nodes added by the piecemeal process have been added by the S-process before), for every time
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step t, we have Tt ⊇ T ′
t , so at the end, we must have T ⊇ T ′. On the other hand, at the step t̂ when Sr

is added, the piecemeal process has added all of S as well as possibly additional nodes, so T ′
t̂
⊇ T0. By

monotonicity, for all subsequent steps t̂+ t, we have T ′
t̂+t
⊇ Tt. In particular, at the end, T ′ ⊇ T . Thus, we

have shown that T ′ = T ; in particular, the two processes have the same distribution of final outcomes.

Proof of Theorem 8.22. In order to show that the objective function satisfies Inequality (8.1), we con-
sider four separate processes, adding different sets of nodes and running until quiescence for each. Because
the process quiesces when no new nodes are activated for one round, quiescence must be reached after at
most n steps. We therefore consider times that are multiples of n as times to add new nodes.

The process Ct starts with C0 = A∩B, and runs until quiescence; let the final active set be Ĉ = Cn =
C3n.

The process At starts with A0 = A∩B. Then, at time n, it adds the set A\B and runs until quiescence;
let the final active set be Â = A2n = A3n.

The process Bt starts with B0 = A ∩ B. Then, at time 2n, it adds the set B \ A and runs until
quiescence; let the final active set be B̂ = B2n = B3n.

The process Dt starts with D0 = A ∩ B. At time n, it adds the set A \ B, and at time 2n, it adds
B \A. It runs until quiescence; the final active set is D̂ = D3n.

By Lemma 8.23, the final active sets Â, B̂, Ĉ, D̂ have the same distribution as the active sets at the end
if we simply run the process starting from A,B,A ∩B,A ∪B, respectively. We will show how to couple the
processes so that Ĉ ⊆ Â ∩ B̂ and D̂ ⊆ Â ∪ B̂. In particular, this implies that

|Ĉ|+ |D̂| ≤ |Â ∩ B̂|+ |Â ∪ B̂| = |Â|+ |B̂|.

(Notice that even if we were not interested in the cardinality of the final set, but rather in some arbi-
trary monotone and submodular function g applied to the final set of active nodes, this proof would imply
submodularity.)

First, notice that because Ct does not grow after t = n, while At and Bt do (and until time n, they are
the same), we have that Ct ⊆ At and Ct ⊆ Bt for all time steps t, and in particular Ĉ ⊆ Â ∩ B̂.

The more involved part is showing that D̂ ⊆ Â ∪ B̂. Consider a coupling in which all nodes have the
same threshold for the processes At, Bt, Dt. (However, we will interpret thresholds differently momentarily.)
Then, D2n = A2n = A3n and B2n ⊆ D2n. We will show that B3n \B2n ⊇ D3n \D2n. Then,

D̂ = D3n ⊆ D2n ∪ (B3n \B2n) ⊆ A2n ∪B3n = Â ∪ B̂.

Because we add the same set of nodes B \ A to both B2n+1 and D2n+1, we have that B2n+1 ⊆ D2n+1.
For all nodes v that are not active in B2n+1, the threshold θv must be uniformly random from (fv(B2n), 1];
similarly, for all nodes v not active in D2n+1, θv is uniformly random in (fv(D2n), 1].

In the threshold process as described before, a node v which is not active at time 2n+ 1 becomes active

at time t+1 iff θv ≤ fv(Dt), which happens with (conditional) probability f(Dt)−f(D2n)
1−f(D2n)

. But if our goal is to

achieve this particular activation probability, we can also do it by having node v become active at time t+1
iff θv ≥ 1− (fv(Dt)− fv(D2n)). Since the length of the interval (1− fv(Dt)− fv(D2n), 1] is the same as that
of (fv(D2n), fv(Dt)], and both are contained in (fv(D2n), 1], the distribution of outcomes of the processes are
the same. So for time steps t = 2n+ 1, . . . , 3n, the processes Bt and Dt both use this alternative antisense
coupling interpretation of the thresholds. See Figure 8.3 for an illustration.

Now, we can use an induction proof to show that Bt \ B2n ⊇ Dt \D2n for all t ≥ 2n + 1. For the base
case t = 2n+ 1,

B2n+1 \B2n = A \B2n ⊇ A \D2n = D2n+1 \D2n.
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fv(D2n)

fv(B2n)

fv(Dt)

fv(Bt)

1− (fv(Dt)− fv(D2n))

1− (fv(Bt)− fv(B2n))

Figure 8.3: An illustration of thresholds in the antisense coupling.

For any later time step t, consider a node v /∈ Dt; in particular, θv ≥ f(D2n). If v becomes active at time
t+ 1 in the Dt process, then by definition of the antisense coupling,

θv ≥ 1− (f(Dt)− f(D2n))
(∗)
≥ 1− (f(Bt)− f(B2n)).

We will show the step (*) in a moment. Therefore, v also becomes active in the Bt process. Since this holds
for all candidate nodes v, we have shown that Bt+1 \B2n ⊇ Dt+1 \D2n, completing the inductive proof.

Finally, to prove the step labeled (*), in the following, we use that f is submodular and D2n ⊇ B2n (for
the first inequality), and that f is monotone and Dt \D2n ⊆ Bt \B2n by induction hypothesis (for the second
inequality):

f(Dt)− f(D2n) = f(D2n ∪ (Dt \D2n))− f(D2n) ≤ f(B2n ∪ (Dt \D2n))− f(B2n)

≤ f(B2n ∪ (Bt \B2n))− f(B2n) = f(Bt)− f(B2n).

This completes the proof of the theorem.

8.7 Further Reading

Characterizing when Equivalent Graph Distributions Exist

In the context of Theorem 8.22, we mentioned that there exist natural models of influence (Decreasing
Cascade Model, Submodular Threshold Model) that have submodular objective functions, but for which
there is no equivalent distribution of graphs to prove submodularity; in particular, Lemma 8.17 cannot
be applied. This raises the question of which influence models do allow a proof of submodularity via an
equivalent distribution of graphs. This question is answered in a paper by Salek et al. [358]. For a function
g defined on sets, let gv denote the “discrete derivative” gv(S) := g(S ∪ {v})− g(S), and inductively define
gT∪{v}(S) := gT (S ∪ {v}) − gT (S). (It is not hard to see that this definition does not depend on which
element of a set is chosen first.) [358] shows that there is an equivalent distribution over graphs if and only
if the following three conditions hold simultaneously:

1. g itself is non-negative.

2. All discrete derivatives gT with |T | odd are non-negative.

3. All discrete derivatives gT with |T | > 0 even are non-positive.
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Speeding up the Optimization

The greedy algorithm for influence maximization as described here scales up to a few 10,000 nodes. A huge
amount of subsequent work has aimed to speed up the optimization so as to scale to millions or billions
of nodes. Most of the algorithms are heuristics that sacrificed the approximation guarantees for efficiency,
while a few are heuristics that keep the 1− 1/e approximation guarantee while “typically” speeding up the
execution, but not guaranteeing to do so. This literature is much too extensive to review here, but interested
readers are pointed to the survey book by Chen, Lakshmanan, and Castillo [96].

A noticeable new idea was put forth by Borgs et al. [60], and further improved and implemented by Tang
et al. [379, 380]. The idea in these papers is to consider influence in reverse, i.e., determining which nodes
v would have influenced a particular target u. By sampling enough targets, choosing nodes that appear in
many sets of “potential influencers of u” will give similar provable approximation guarantees, since it still
solves a coverage problem. With a careful choice of expanding influence search and the right data structures,
this can bring down the required running time to near-linear.

Some Different Influence Models

A somewhat different influence model was considered by Even-Dar and Shapira [154]. They consider the
voter model [106, 218]: in each iteration, each node v simultaneously chooses a random neighbor according
to some distribution (e.g., uniformly), and copies the state of that neighbor. In the limit, for a connected
graph, this will result in all individuals adopting the same behavior. By showing equivalence to a Markov
Chain, [154] shows that the influences of nodes factor, and therefore, a simple greedy algorithm is optimal.
Even if different nodes have different activation costs, there is an FPTAS for the problem, based on the
FPTAS for Knapsack [387].

As discussed above, when thresholds at nodes are fixed, the problem becomes harder to approximate. In
fact, even if all nodes have the same constant threshold τ ≥ 2, the problem of finding a minimum-size set
of nodes that eventually activates the entire graph is NP-complete, a fact shown for τ ≥ 3 by Dreyer and
Roberts [140] and for τ = 2 (as well as majority and some other rules) by Chen [93]. In fact, [93] showed
approximation hardness results for this version of the problem.

Competition between Cascades

A direction which has received a fair share of attention is multiple competing influences. The motivation
here is viral marketing, when different companies want to use word-of-mouth in the same social network
to promote competing products. Each node can only adopt (and recommend) one product, and the main
question is how to deal with the possible timing issues and create a well-defined and natural model. Probably
the first paper offering explicit analysis of such games is one by Dubey et al. [143], which studies equilibria
of such competition in the simple linear model of [353]. A similar model is studied by Grabisch et al. [197],
who derive various properties of the equilibrium outcomes of the game between the companies.

Several other papers considered the aspect of competition. Bharathi et al. [49] augmented the cascade
model with a timing component, which leads to a simple tie-breaking for choosing which product a node
adapts. One of the main results of [49] is that the benefit of a set for the last player is still a submodular
function; using a general result of Vetta [389], this also implies that the “Price of Competition” is at most
a factor of 2, i.e., regardless of how many companies are competing, the expected reach of these influences
combined is at least half as much as if they all pooled and coordinated their resources. Carnes et al. [83]
also consider the problem of the last player in this setting, but without a timing component. Instead, they
propose two tie breaking rules: one distance-based (with an additional distance notion introduced for the
problem), and one by uniform random choice from among all active neighbors.

Goyal and Kearns [196] proposed a variant of a threshold model that is amenable to analysis, and showed
that the Price of Competition for two companies is at most 4. As pointed out by He and Kempe [211], the
model they define also satisfies the necessary conditions to apply Vetta’s result [389], so that the Price of
Competition can in fact be bounded by 2 for any number of companies. In general, defining competitive
threshold models appears more difficult than cascade models: [61] investigate many natural ways of defining
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competitive threshold models, and show that they have surprising non-monotonicity or non-submodularity
properties.

Tipping Points and Phase Transitions

The extent of diffusions (or epidemic diseases) through a social network has also received attention in the
physics and economics communities (e.g., [226, 227, 322, 336, 337, 406]). There, the assumption is usually
(implicitly) that the social network is uniformly random subject to its degree distribution, and that the
initial set of infected individuals is also random. The interest in this line of work is then in “tipping point”
or “phase transition” behaviors, i.e., at what settings of parameters does the reach of the influence go from
nearly negligible to significant.

Equilibrium States and Convergence

As we saw implicitly in Section 8.4, there can be multiple “equilibrium” states of the system. In particular,
it is possible for some of the nodes to end up active, and others inactive. In terms of technology, this means
that some are still using the old (inferior) technology, while others have switched to the new and superior
one. This coexistence disappears if we modify the model as follows: with small probability, nodes choose
the wrong response to their neighbors’ choices. Thus, sometimes, a node will become active even though
it would be superior (in terms of the payoffs defined in Section 8.4) to remain inactive, or vice versa. In
this case, the system always converges to the state in which all nodes use the superior technology [234]. An
interesting question is then how quickly this convergence happens. Following up on work of Ellison [146],
which analyzed the special case of complete graphs and k-nearest neighbor graphs on the line or cycle (for
n ≫ k), Montanari and Saberi [305] showed that the convergence time is asymptotically characterized by
the tilted cutwidth of the graph, a certain isoperimetric property. In particular, graphs that expand well
tend to have slow convergence, while globally poorly expanding graph have fast convergence. Note that this
stands in stark contrast to the spread of diseases or models like the cascade model, where expansion tends
to imply fast spread.

Maximizing Profits from Sales

In our optimization problem so far, we have assumed that the sole goal is to maximize the number of indi-
viduals adopting the innovation. In a more realistic viral marketing setting, these adoptions will correspond
to sales of an item, and the company will have the ability to set different prices at different times, or even
for different consumers. This version has been studied by Hartline et al. [207]. They show that the following
“Influence and Exploit” strategies are within a factor 1

4 of optimal: first, give the product for free to a
most influential subset; then, choose prices for the remaining bidders in random order to maximize revenue,
ignoring their network effects. As a second step, they show that the resulting problem of selecting the most
influential set leads to a submodular objective function, though not necessarily a monotone one. Using an
0.4-approximation algorithm of Feige et al. [162], they thus obtain a constant-factor approximation algo-
rithm. A slightly modified model was studied by Arthur et al. [24]: in their model, the seller cannot choose
arbitrarily whom to offer the product to. Instead, the product spreads by recommendations, but the seller
can decide on a price for each individual once a recommendation occurs. In this model, Arthur et al. prove
competitive guarantees based on the type of buyer model.

Adopting Multiple Technologies

In our derivation of activation thresholds in Section 8.4, we assumed implicitly that each node adopted only
one technology. Instead, a node v may have the choice of adopting both the old and new technologies, at an
extra cost of dvφ, for some parameter φ (where dv is v’s degree). In return, v gets communication benefits
of 1 − q or q for all neighbors. For instance, a person could learn multiple languages, maintain multiple
messaging softwares, or multiple data formats, such as CDs and MP3s. Immorlica et al. [222] considered this
question. In their most basic model, they assume a = b = 0, i.e., no communication is possible with differing
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technologies. They investigate the regions for the parameters φ, q which allow the new technology to spread
through the network. Interestingly, this region is not always convex. They then consider the generalization
to partial compatibility, i.e., values a, b > 0, and its impact on the diffusion of the new innovation, again
noticing non-monotonic behavior.

Submodular Optimization

The technique we used in the proof of Theorem 8.10 is quite general: prove that the function to be optimized
is non-negative, monotone and submodular; then, the greedy algorithm will be a 1 − 1/e approximation.
This technique has been applied in a number of scenarios such as selecting sensors, variables to observe, or
samples to draw [119, 261, 262, 263, 279]. In different scenarios, we may be interested in somewhat different
objectives or constraints. For instance, we saw above that when sales prices are taken into account, the
natural objective function is submodular, but not monotone. As another examples, Krause et al. [264] show
that a sensor placement and scheduling problem for coverage can be expressed as maximizing the minimum
of multiple submodular functions fi(Ai), where the sets Ai must be disjoint, and their union satisfies a size
constraint. [264], among others, gives a 1/6-approximation algorithm for this problem.

The frequency with which submodular objective functions appear in many settings has led to a lot of
work on approximating them with various constraints. In a classic paper, Iwata et al. [224] show that for
any submodular function f , finding a set S minimizing f(S) can be achieved in polynomial time. (Notice,
however, that we did not include any size constraints on S.) For the maximization problem, there has been
a lot of recent interest in generalizing the result of Nemhauser et al. [117, 317]. Sviridenko [376] shows how
to obtain a 1 − 1/e approximation for monotone submodular functions even when different elements have
different inclusion costs, and a total budget is given. Calinescu et al. [81, 390] give a beautiful 1 − 1/e
approximation algorithm for the case when the solution is constrained to be from a given matroid2. If the
solution is required to belong to k different matroids, then a recent result of Lee et al. [275] shows how to
approximate the best solution to within a factor of 1/(k + ǫ) for monotone functions.

For non-monotone submodular functions, we previously mentioned the 0.4-approximation algorithm of
Feige et al. [162]. Lee et al. [274] consider the more general constraint of restricting solutions to k different
matroids, and give a 1

k+2+1/k+ǫ approximation for this problem, as well as a 1/5 − ǫ approximation when

solutions must meet k Knapsack constraints. Vondrák [391] provides some lower bounds on how well these
problems can be approximated.

Learning the Influence Model

In order to maximize the diffusion of an innovation in a network, it is necessary to first learn the influence
that individuals have over each other. So far, we have assumed that these data are given precisely, which
is certainly unrealistic. Indeed, they must be learned first, presumably from past observed data. This
question has recently been investigated by many papers, with different objectives and results (see, e.g.,
[18, 141, 142, 192, 193, 195, 316, 319, 357, 403, 409] for a sample). Typically, the approach is to formulate
the likelihood of the observed cascades under some modeling assumption, and then infer model parameters
(such as influence probabilities or rates) so as to maximize the likelihood or log-likelihood. Depending on
the model, the objective may be convex (and can thus be optimized), or heuristics are employed. A notable
difference is [141], which does not aim to explicitly infer the parameters of the model, but rather uses the
graph distribution representation (in the vein of Lemma 8.17) of the process, and aims to infer a sparse
distribution over graphs.

2A matroid is a downward-closed set system with the following exchange property: If S, T are two sets in the set system
with |S| < |T |, then there is an element u ∈ T \S such that S ∪{u} is also in the matroid. In other words, elements of sets can
be exchanged one by one.
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Chapter 9

Vaccination of Networks

In Chapter 8, we considered the goal of maximizing the spread of a product, behavior or piece of information.
This is a natural goal when the behavior or piece of information is desirable. On the other hand, for harmful
rumors, undesirable behavior, or (electronic or biological) viruses, this goal seems to be almost the opposite
of what one would hope for. In those contexts, it would be desirable to limit the spread as much as possible.

Doing so gives rise to a natural class of optimization problems very different from the maximization
objective. We consider a setting in which a principal wishes to protect a network from future infections with
limited resources, such as vaccines or time to patch machines. This focus on future infections is in contrast
to reactive strategies, which would strive to isolate individuals quickly once their infection status has been
detected. Both approaches and settings are important in practice, but here, we focus on the preventative
one.

More specifically, we consider the following kind of setting. A social network (graph) G is given. A
principal can choose to vaccinate some of the nodes, subject to a budget constraint on vaccinations. Subse-
quently, an infection will start at one node, and spread over the network. The principal’s goal is to minimize
the (expected) spread of the infection, subject to the budget constraint on vaccinations. In the preceding
description, there are multiple ways to make concrete several aspects:

1. How is the start node chosen? The two most natural approaches would perhaps be adversarial or
uniformly random; however, one can also consider a node drawn from another (known) distribution,
which would also subsume the case of starting from a fully known node as a special case. Indeed, in
our analysis here, we will assume that the start node is drawn from a known distribution.

2. What is the effect of being vaccinated? The “cleanest” approach is to have the node entirely immune
to subsequent infection. As far as the spread of a disease is concerned, this is equivalent to the node
being entirely removed from the graph.

In reality, a vaccination may not bestow full immunity on a node. Rather, it may (significantly) lower
the probability of the node being infected when a neighbor becomes infected, though not all the way
to 0. Incorporating this generalization into the model would likely be significantly more complicated,
as it will break linearity of the objective function.

3. How does the disease spread? The most natural approach is likely a model akin to the Independent
Cascade model (Definition 8.14). That is, whenever a node u becomes infected, it has a probability
pu,v of infecting each currently uninfected neighbor v. Unfortunately, this model again badly breaks
linearity of the objective, so it is not at all clear how one could obtain an approximation algorithm
with provable guarantees.

Instead, we will assume that pu,v = 1 for all edges, i.e., the disease spreads deterministically from each
infected node to each neighbor. While this is likely an even more drastic oversimplification compared
to the one about vaccine efficacy, it will still preserve some of the interesting aspects of the problem,
while enabling algorithms with provable guarantees.
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9.1 The Model and some Basic Observations

The following model is due to Aspnes et al. [29]. The network is represented by an undirected graph G of n
nodes, each of which can either be vaccinated or unvaccinated. The cost for vaccinating node v is cv,

1 and
a budget γ for total vaccination cost is specified. Once all vaccination decisions are made, a random node
becomes infected, and from that node, the infection spreads along edges of the graph to all unvaccinated
nodes. The random start node of the infection is the node v with probability pv, where of course

∑

v pv = 1.
No vaccinated nodes can become infected or pass on the infection. Let S be the set of vaccinated nodes, and
Γ1, . . . ,Γk the connected components of G \ S.

If node v is unvaccinated and in component Γi, it will become infected exactly when the start node of
the infection is in Γi, which happens with probability

∑

u∈Γi
pu. Since there are |Γi| nodes in component

Γi, each of whom gets infected with probability
∑

u∈Γi
pu, the expected number of ultimately infected nodes

with set S vaccinated is2

I(S) =
∑

i

|Γi| ·
∑

u∈Γi

pu.

The objective is to find a set S (approximately) minimizing I(S), subject to the constraint that
∑

v∈S cv ≤
γ. While the objective treats all nodes’ infections the same, the model can be easily extended to incorporate
(non-uniform) infection costs νv for the nodes, which are incurred when v is infected. It will be easy to see
that the approximation result carries over with essentially no changes.

While the natural way to phrase the problem, and the one algorithmically addressed in [29, 94], is the one
we just formulated as vaccinating nodes, in order to simplify the presentation here a bit, and for consistency
with some earlier work, we will here instead consider the problem of vaccinating edges. This change will
emphasize the connection to traditional cut problems, and the natural Region Growing lemma for such cut
problems.

In the modified problem, we have costs ce for removing edges. When vaccinating/removing a set S of
edges, we again denote the resulting components of G\S by Γ1, . . . ,Γk. Again, the goal is to minimize I(S),
now subject to the constraint that

∑

e∈S ce ≤ γ.

9.2 A Bicriteria Approximation Algorithm

We begin with the following observation: the objective can be exactly written as

I(S) =
∑

u

∑

v

1[there is a path from u to v in G \ S] · pu.

This is because if there is a path from u to v, then whenever u is the start node of the infection (which
happens with probability pu), v will become infected. This observation will be at the heart of phrasing the
objective function as a linear function.

At a higher level, it suggests a natural connection to multicut problems, in which many source-sink pairs
(here: all pairs, ideally) should be separated. Indeed, the approach we describe here, due to [94], is a fairly
direct modification and application of the region growing technique of Garg, Vazirani, and Yannakakis [179],
in particular as generalized and broadened into a study of “spreading metrics” by Even, Naor, Rao, and
Schieber [153]. The original paper by Aspnes, Chang, and Yampolskiy [29] instead used repeated invocations
of the Sparsest Cut algorithm of Arora et al. [22], leading to a much less “practical” algorithm with a worse
approximation guarantee.

Based on our earlier observations, we now phrase an (integer) LP for the problem. We will have two
types of variables:

1For presentation purposes, we will switch to edge vaccinations in a moment.
2In the special case when p is the uniform distribution over nodes, the expression simplifies to I(S) = 1

n
·
∑

i |Γi|
2, so the

objective would be to minimize the sum of squares of component sizes.
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1. The variables ye ∈ {0, 1} capture whether edge e is cut/vaccinated (ye = 1) or not (ye = 0).

2. The variables xu,v ∈ {0, 1} capture whether there is a path between u and v in the graph based on
edge vaccinations (xu,v = 1) or not (vu,v = 0); in other words, xu,v captures if an infection starting at
u would reach v.

Minimize
∑

u∈V

∑

v∈V pu · xu,v

subject to
∑

e ce · ye ≤ γ
xu,u = 1 for all nodes u
xu,w ≥ xu,v − ye for all nodes u and edges e = (v, w)
ye ∈ {0, 1} for all edges v
xu,v ≥ 0 for all node pairs u, v.

The first constraint limits the total cost of edges that can be vaccinated/cut. The second and third
constraint, together with the minimization objective, ensure that the ye and xu,v are consistent, i.e., that
they satisfy the intended definition of the xu,v.

9.2.1 The LP Rounding Algorithm

As usual, we relax the integrality constraint to ye ∈ [0, 1], so that the LP can be solved in polynomial time.
The ye can then be interpreted as the “lengths” of edges. From these lengths of edges, we can then use
shortest path distances to define a hemimetric d (satisfying non-negativity and the triangle inequality), by
setting

du,v = min
P is a u−v path

∑

e∈P

ye.

With this definition, we then have

xu,v = max(0, 1− du,v). (9.1)

Our goal is to use (a slight modification of) the region-growing techniques of Garg, Vazirani, and Yan-
nakakis [179] to round the fractional LP values in order to obtain a set of vaccinated nodes. The hemimetric
we defined is a “spreading metric” [153], and our analysis bears a lot of similarity with that of Even, Naor,
Rao, and Schieber [153, 179].

We define the ball around u of radius r as Bu(r) = {v | du,v ≤ r}, and its boundary (the set of edges
crossing from inside to outside Bu(r)) as δu(r) = {e = (v, w) | du,v ≤ r < du,w}. Notice that for each radius
r ≤ 1, the set δu(r) forms a cut separating u from all nodes v with du,v > r.

Similar to several earlier chapters, the idea is to break the graph up into “clusters,” and we will choose
these clusters to be balls around nodes. When choosing a particular ball Bu(r), the cost incurred is the total
cost of edges on the boundary. So ideally, we would like this cost to be “small”, at least compared to the
LP cost. One natural comparison point is the cost the LP pays not only for those edges (which might be
fractionally cut to only a small extent), but also to the cost the LP incurs for edges entirely inside the ball
Bu(r). This is because once the algorithm commits to the cluster Bu(r), it will never cut the edges entirely
inside Bu(r), nor consider them for other clusters, so the cost incurred by the algorithm can be “charged”
against this cost as well.

To formalize this idea, we next define the volume of a ball. The fraction to which an edge e = (v, w) is
inside a ball of radius r around u is defined as follows:

qu(r, e) =







1 if both v, w ∈ Bu(r)

0 if both v, w /∈ Bu(r)
r−du,v

du,w−du,v
if du,v ≤ r < du,w.
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Then, the volume of a ball is

Vu(r) =
∑

e=(v,w)

ce · (du,w − du,v) · qu(r, e).

With these definitions in place, we can now define the rounding algorithm, which basically just chooses
balls around previously unclustered nodes which achieve a good ratio of cost of the boundary to the volume.
The algorithm is parameterized by an upper bound ρ < 1

2 on the maximum radius of any ball, which will
enable a tradeoff between violation of the budget constraint and loss of approximation in the objective
function.

Algorithm 6 LP Rounding Algorithm

1: Solve the LP to obtain the hemimetric du,v.
2: while G still contains nodes do
3: Let u ∈ G be an arbitrary node.

4: Find a radius ru := r ≤ ρ minimizing
∑

e∈δu(r) ce

Vu(r)+Vu(ρ)/n
.

5: Set S = S ∪ δu(ru).
6: Remove from G all of Bu(ru) and δu(ru).
7: Output the set S of edges to be vaccinated.

The key step in analyzing Algorithm 6 is a region growing lemma for (weighted) multicuts, due to
[179, 153, 179], which shows that there must always exist a radius r for which the objective in the ratio
minimization step in the algorithm is quite small.

Lemma 9.1 For any node u, any α > 0, and radius bound ρ, there is a radius ru ≤ ρ such that

∑

e∈δu(r)

ce ≤
1

ρ
· ln
(
Vu(ρ) + α

α

)

· (Vu(r) + α). (9.2)

Such a radius ru can be found in polynomial time: an algorithm can focus only on distances r ≤ ρ
such that r = du,v for some node v (because such an r must be a minimizer), and retain one minimizing
∑

e∈δu(r) ce

Vu(r)+α .

Proof. We assume for contradiction that Inequality (9.2) fails to hold for all r ∈ [0, ρ). First, observe that
by definition,

d

dr
Vu(r) =

∑

e∈δu(r)

ce

for all r, so the contradiction assumption can be restated as

d
drVu(r)

Vu(r) + α
>

1

ρ
· ln
(
Vu(ρ) + α

α

)

for all r ∈ [0, ρ). By taking an integral over r from 0 to ρ on both sides, we obtain that

∫ ρ

0

d
drVu(r)

Vu(r) + α
dr >

∫ ρ

0

1

ρ
· ln
(
Vu(ρ) + α

α

)

dr = ln

(
Vu(ρ) + α

α

)

.

By standard integration techniques, the left-hand side equals

[ln(Vu(r) + α)]
ρ
0 = ln

(
Vu(r) + α

α

)

,

which gives a contradiction, thus completing the proof.
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We now use this lemma with α = 1
n · Vu(ρ), and prove the following bicriteria approximation guarantee:

Theorem 9.2 When Algorithm 6 terminates, it satisfies the following two properties:

1. The total cost of vaccinated edges in S is at most 2 ln(n+1)
ρ · γ.

2. The expected number of infected nodes is at most 1
1−2ρ times the objective function value of the LP.

In other words, the algorithm is a
(

1
1−2ρ ,

2 ln(n+1)
ρ

)

-bicriteria approximation algorithm.

Proof. 1. Consider the set of edges δu(ru) removed (i.e., chosen for vaccination) in some iteration. By
applying Lemma 9.1 with α = Vu(ρ)/n, we obtain that

∑

e∈δu(r)

ce ≤
1

ρ
· ln(n+ 1) · (Vu(ru) + Vu(ρ)/n).

Let U be the set of all nodes which were chosen as centers of balls at some point during the algorithm.
To upper-bound the total cost of removed edges, we sum over all nodes u ∈ U . Since all nodes and
edges in Bu(ru) and δu(ru) are removed from G, their weight is only counted for one region/cluster,
and we obtain that

∑

e∈S

ce ≤
ln(n+ 1)

ρ
·
∑

u∈U

(Vu(ru) + Vu(ρ)/n) ≤
2 ln(n+ 1)

ρ
· γ.

In the last inequality, we used that Vu(ρ) ≤ γ for all u, and that
∑

u Vu(ru) ≤ γ by disjointness of the
regions/balls. Both of these inequalities follow immediately from the first constraint of the LP.

2. To analyze the objective function, consider any two nodes v, w in the same component of G \S. Thus,
both v and w are in the same ball Bu(ru) for some u ∈ U . By the triangle inequality, we get that
dv,w ≤ du,v + du,w ≤ 2ru ≤ 2ρ. Then, by Equation (9.1), we get that xv,w ≥ 1− dv,w ≥ 1− 2ρ. Thus,
for each pair v, w ∈ Bu(ru) individually, the LP pays at least a fraction pu · (1 − 2ρ), whereas the
algorithm’s solution pays at most pu · 1. For pairs v, w that are not in a common ball, the algorithm’s
solution pays 0. Thus, the total objective of the algorithm is at most 1

1−2ρ larger than that of the LP.
This proves the approximation guarantee for the objective function.

9.2.2 Integrality Gap of the LP

We now show that the bicriteria analysis in Theorem 9.2 is essentially tight, by giving an example of a graph
on which the integrality gap matches the approximation guarantee of Algorithm 6 up to constants, even in
a bicriteria sense.

Let G be a ∆-regular edge expander graph with expansion at least 1, i.e., |e(S,S)|
|S| ≥ 1 for all sets S with

|S| ≤ n/2. The existence of such a graph (for large enough, but constant, ∆) can be proved easily using
the probabilistic method. Set all edge costs ce = 1, γ = n

2b for a constant b > 1 to be determined later, and
pu = 1/n for all u, i.e., a uniform distribution.

Now consider a solution S vaccinating at most γ nodes, and let Γ1, . . . ,Γk be the connected components
of G \ S. We will show that there is at least one i such that |Γi| ≥ n/2.

For assume that this were not the case. Then, the expansion property can be applied to each Γi,
guaranteeing that each has at least |Γi| edges leaving. By definition, all of these edges must be in S, and
because each edge is counted exactly twice (once for each of the components it emanates from), we obtain
that the total number of edges cut is at least n/2 > γ. Therefore, there must be at least one component
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Γi of size at least n/2, and the expected number of infected nodes for any integral solution is at least n/4.
(With probability at least 1

2 , at least n/2 nodes get infected.)
Next, we consider the objective value of a fractional solution to the LP. Define a fractional solution

which assigns ye = γ
m = 1

∆b for all edges e. If nodes u, v are h hops away from each other in G, assign
xu,v = max(0, 1− h · 1

∆b ). This clearly defines a feasible solution to the fractional LP.
To evaluate the objective function, focus on one node u, and consider

∑

v xu,v. We can group the nodes
v by increasing distance from u. By the degree bound, there are at most ∆h nodes v at distance h hops
from u. Furthermore, if u and v are at distance at least ∆b, we have that xu,v = 0 in the above definition.
We therefore obtain that

∑

v

xu,v ≤
∆b∑

h=0

∆h · (1− h · 1

∆b
) =

∆1+∆b − 1

∆− 1
+

1

∆b
· ∆+∆1+∆b((∆− 1) ·∆b− 1)

(∆− 1)2
= Θ(b ·∆∆b).

Summing over all n, and multiplying by 1/n gives us that the fractional LP objective value is Θ(b ·∆∆b).
Thus, the integrality gap of the objective function is Θ( n

b·∆∆b ). In particular, so long as b = o(log n), the
integrality gap is polynomial in n. Thus, the factor Θ(log n) incurred in the number of vaccinated edges
by our rounding algorithm is necessary so long as we desire a better-than-polynomial approximation in the
expected number of infected nodes.

9.3 Further Reading

In our analysis, we approached the problem from the viewpoint of a principal with control over all vaccina-
tion decisions. In many real-world situations, such as vaccinations against diseases or security software on
computers, the decisions lie with individuals who may be only concerned about their own cost, rather than
the overall cost to the network. The problem then takes on a game-theoretic nature, and one would study
equilibria of the game. A natural formulation was given by Aspnes et al. [29]: in their model, each individual
incurs a cost cv for being vaccinated, and a cost νv if/when getting infected. As they show, the result may
unfortunately be serious under-vaccination. For example, if cv > νv, then it is a dominant strategy for
individuals to not get vaccinated. However, in some network structures (e.g., a star), if cv is not much larger
than νv, it would be societally much preferable to “sacrifice” the center node and protect the whole network.
In other words, the so-called Price of Anarchy [260] and Price of Stability [20] can both be Θ(n). Both
measure the ratio between the cost of equilibria and a socially optimal solution; the Price of Anarchy focuses
on the worst equilibrium (the worst outcome of letting individuals choose their own actions), while the Price
of Stability focuses on the best equilibrium (the outcome of having to prescribe a solution to individuals
from which they will not choose to deviate).

In subsequent work, Chen et al. [94] considered the fact that individuals may not be entirely selfish:
they may ascribe a small cost to themselves from other nodes becoming infected. Such models of altruistic
behavior can sometimes drastically lower the Price of Anarchy or Price of Stability. In the context of the
vaccination game, with altruism, pure Nash Equilibria may cease to exist. Chen et al. [94] therefore study
the outcomes of opt-out dynamics, in which individuals can only change their strategies from vaccinating
to not vaccinating, but not the other way. They show that with a weight of λ on the altruistic term in the
objective function, the Price of Opting Out is bounded by 1/λ.

The model has been extended in several other ways. Meier et al. [293] consider the addition of friendship.
Moscibroda et al. [308] instead consider malicious Byzantine players who may misrepresent their actions
with an intent to harm other players. (Naturally, this model is more suited to computer networks than social
networks.) Perhaps surprisingly, such malice can sometimes lead to societally more desirable outcomes, due
to the fear of other players. Diaz et al. [132] showed that the same “windfall of malice” can be achieved with
a mediator. A mediator is a trusted third party that suggests actions to each player; the players retain free
will and can ignore the mediator’s suggestions.

A number of studies have analyzed the spread of worms or viruses on Internet-like topologies by focusing
on characterizing the epidemic threshold (the transmission rate at which the disease goes from dying out
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quickly to infecting a large share of the network) for models such as small-world graphs (see Chapter 7)
and preferential attachment models (see Chapter 6). The epidemic threshold is related to graph properties
such as degree distribution, spectral radius and isoperimetric constants [101]. Based on these observations,
Dezső and Barabási [130] suggest the vaccination of high-degree nodes in power-law random graphs as a
way of increasing the epidemic threshold and thereby reducing the spread of diseases. Similar heuristics
with analysis under random graph models with given degree distributions are also presented in the book by
Jackson [225]. The analysis for random graph models such as these is often quite different from the cut-
based approaches we examined here, in that random graphs tend to be expanders, and as such, no specific
structural properties can be exploited. This is why for random graph models, heuristics based on degree or
similar centrality tend to perform best.

If there is a timing component to the infection process, i.e., in each time step, the algorithm can vaccinate
k nodes, and the infection spreads one hop in the network, then the problem is known as the Firefighter

problem [19]. For different optimization versions of this problem, Anshelevich et al. [19] analyzed approxi-
mation algorithms and hardness results.
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Chapter 10

Epidemic Algorithms

In the previous chapter, we considered examples of processes that naturally spread through networks in
an epidemic fashion, such as information or behaviors, or — of course — epidemic diseases. One intuitive
observation about such spreading processes is that they are very resilient : even if a few individuals are
immune or removed from the network, the epidemic tends to reach a similarly large share of the network.
This resilience, while undesirable for actual epidemics, is very desirable for communication and computation
in computer networks: even if a few nodes are faulty, we would like for information to diffuse to the rest of
the network, and for computation to succeed. The first to propose simulating the behavior of epidemics as
a principle for systems design were Demers et al. [129], in the context of maintaining replicated data bases.
Their idea was that updates to the data bases would not be distributed directly to all other copies, but
passed around like a rumor, with nodes randomly choosing others to exchange updates with.

Since the appearance of [129], there has been a large body of work on epidemic algorithms as a primitive
for computer networks. Among the first to propose a system based on these approaches were van Renesse et
al. with the design of Astrolabe [385, 386]. Here, we will investigate some of the analysis underlying two key
primitives of distributed computation: spreading a single message to everyone, and computing the average
of the values held by all nodes in the network. These lie at the core of many more complex network tasks.

10.1 Spreading One Message

To get a feel for the benefits of epidemic algorithms, let us begin by considering an obvious alternative, also
used in many systems. To disseminate a message to all nodes, the nodes could build (a priori) a tree, and
then forward the message along the edges of the tree. So long as the height of the tree is logarithmic, and
the degrees bounded by a constant (e.g., for a complete binary tree), the message will reach all nodes in
O(log n) steps. The best completion time (time by which the last node receives the message) is achieved by
a binomial tree. Notice that Ω(log n) is also an obvious lower bound: in each round, the number of nodes
having the information can at most double.

The problem with any tree is that it is not fault-tolerant. If one node fails, then none of the nodes in
the subtree rooted at it will receive the message. In order to achieve more fault-tolerance, we will need
more redundancy in messages sent. One could make the graph 2-connected, or more highly connected.
But in order to achieve higher fault-tolerance, the graph structures will have to become more complicated,
and thus difficult to compute and maintain. Instead, we will see that simple randomized protocols based
on the behavior of epidemics achieve essentially the same time bounds, and are naturally fault-tolerant.
Such algorithms are usually called epidemic algorithms or gossip algorithms, and are based on information
exchanges between random node pairs.

For the time being, we assume that every pair of nodes can in principle communicate, i.e., that the
communication graph is complete. (We will discuss some pointers to literature avoiding this assumption
at the end of the chapter.) In all versions of gossip protocols we consider here, we assume that there are
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synchronous rounds, and in each round, each node calls a random other node and exchanges information.
These exchanges can be divided into three categories:

1. In push gossip, each (informed) sender randomly picks a partner and sends a message.

2. In pull gossip, each node picks a random partner, and receives a message from the partner (if it has
one).

3. In push & pull gossip, each node picks a random partner, and both forwards and receives a message.

Naturally, push & pull gossip makes most sense when multiple messages are being exchanged, as otherwise,
no informed node ever needs to pull, and no uninformed node can ever push. For instance, exchanging
information in both directions is useful in synchronizing a replicated distributed database periodically, the
original application of [129].

In deciding whether to use gossip as a primitive, an important consideration is its speed: how quickly do
all nodes receive the message? We expect the time to be roughly O(log n), as the number of nodes having
the message roughly doubles until most nodes already have the message.

Proposition 10.1 With high probability, it takes O(log n) rounds to get a message to everyone.

Proof. We first analyze the behavior until more than n/3 nodes have the message. So consider a time t
when at most m ≤ n

3 nodes have the message. Then, each of the m messages sent has probability at least
2/3 of reaching a previously uninformed node, so in expectation, at least 2m

3 sent messages reach previously
uniformed nodes.

Unluckily, this does not quite guarantee that 2m/3 new nodes will be informed, as some of these messages
will reach the same nodes. We want to upper-bound how frequently this happens. For any given pair of
messages, the probability that they both go to the same uninformed node is O( 1

n−m ). As there are at most
(
m
2

)
such pairs, the expected number of such collisions is at most m2

2(n−m) ≤ m2

2 · 1
2m = m

4 . Thus, the expected

number of newly infected nodes is at least 2m
3 − m

4 = 5m
12 .

Let the random variable Xt be the number of informed nodes at time t. By our arguments above, X0 = 1,
and E

[
Xt+1 | Xt = m ≤ n

3

]
≥ 17

12m. By induction, E[Xt] ≥ ( 1712 )
t. We can now apply Markov’s Inequality

to show that with high probability, after O(log n) rounds, at least n
3 nodes are active.

Once n
3 nodes are active, any other node v is not called by an informed node with probability at most

(1 − 1
n )

n
3 ≤ e

−1
n ·n3 = e−1/3. So after t = 6 log n independent rounds of this process, the probability that a

particular node v is still uninformed is at most (e−1/3)6 logn = n−2. By a Union Bound over all n nodes,
the probability that all nodes get the message in O(log n) rounds is then at least 1 − 1

n . By increasing the
constant in the O(log n) time bound, we can improve the probability to 1− 1/nc, for any c.

A more careful analysis is performed in [174, 340], where the precise constants and lower-order terms are
worked out to guarantee a high-probability bound.

In the proof of Proposition 10.1, notice the following: From the point at which n/3 = Ω(n) nodes have the
message until the point when all nodes have the message, there are Ω(log n) rounds, and in each such round,
each informed node sends the message to some other node, for a total of Ω(n log n) messages. On the other
hand, using any tree would only require sending O(n) messages. Thus, gossip achieves its fault-tolerance
with high redundancy : by using Ω(log n) time as many messages as necessary.

Naturally, one wonders whether such an amount of redundancy is inherent in any fault-tolerant approach,
or in any gossip-based approach. Karp et al. [238] give a partial answer to this question. They show that
any protocol based on uniform gossip must send ω(n) messages, and, under additional restrictions on the
protocol, Ω(n log log n) messages. Conversely, they analyze more carefully the “push-pull” version of gossip,
and show that if the terminating point is chosen carefully, only O(n log log n) messages are sent.

Theorem 10.2 ([238]) If push-pull is run for log3 n+O(log log n) rounds, then, w.h.p., all nodes have the
message, and, in addition, the total number of messages sent is O(n log log n).
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Proof. Solely for the purposes of analysis, we divide the algorithm into four phases.

1. Startup phase: This phase lasts until log4 n nodes have the message with high probability (probability
at least 1−n−c for some c). We observe that within O(1) rounds, the number of informed nodes doubles
with high probability (because each informed node will have called a previously uninformed one), and
so the entire phase takes O(log log n) rounds for the goal of achieving log4 n informed nodes.

2. Exponential growth phase: This phase lasts until n
logn nodes are informed. We write St for the

number of nodes having the message at time t− 1, and mt the number of messages that were sent in
round t. Because in expectation, each informed node calls one node, and is called by one, we have that
E [mt] = 2St−1.

In fact, mt is sharply concentrated, i.e., unlikely to deviate far from its expectation. To see this, we let

Xuv =

{

1 if node u calls v in round t

0 otherwise.

Then, mt =
∑

u∈St−1

∑

v(Xuv +Xvu). Because mt is a sum of negatively dependent {0, 1} variables,
(a different version of) Chernoff Bounds shows that mt is sharply concentrated around its mean.

Theorem 10.3 (Chernoff Bounds [98, 314]) If X1, X2, . . . , Xn are independent (or negatively cor-
related) {0, 1} random variables, with X =

∑

i Xi, µ ≥ E [X] =
∑

i Prob[Xi = 1], and δ > 0, then

Prob[X > (1 + δ)µ] <
(

eδ

(1+δ)(1+δ)

)µ

.

Similarly, if µ ≤ E [X], then

Prob[X < (1− δ)µ] < e−
δ2

2 µ

Some of these mt messages will not succeed in informing new nodes. The reasons could be two-fold:
either they reach an already informed node, or multiple messages reach the same uninformed node.
The probability that a given message reaches an already informed node is St−1/n, and the probability
of a collision with any other message is at most mt/n. Hence, the expected number of informed nodes
after t iterations is at least

E [St] ≥ St−1 +mt(1−mt/n− St−1/n)

= St−1(1 + (2± o(1/ log n))(1−O(1/ log n)))

= St−1(3±O(1/ log n)).

In the second step here, we used the fact that St−1 ≤ n/ log n. Again, we can write the number of
successful messages (those that inform a new node) as a sum of {0, 1} random variables, and apply a
Chernoff Bound, showing that the value of St will be sharply concentrated (to within a multiplicative
1±1/ log n) around its expectation. When all iterations have outcomes close to the expectation (which
happens with high probability by a union bound over all these iterations), we reach n/ log n nodes in
log3 n+O(log log n) rounds.

3. Quadratic Shrinking Phase: Once n/ log n nodes are reached, each uninformed node has sufficiently
high probability of reaching an informed node in its Pull attempt, so we will ignore Push transmissions,
and only use Pull in the analysis. We write Ut for the number of uninformed nodes after t iterations.
Then, for any node that is uninformed in iteration t− 1 and makes a uniformly random Pull attempt,
the probability that it stays uninformed is Ut−1/n. As a result, the expected fraction of uninformed
nodes after the tth iteration is E [Ut/n] ≤ (Ut−1/n)

2, leading to quadratic shrinking. Again, the calls
for different nodes are independent, so we can write Ut as a sum of independent 0-1 random variables,
and so long as the number of uninformed nodes Ut−1 is large enough (Ut−1 ≥

√
n log4 n), quadratic

shrinking will occur with high probability by Chernoff Bounds.
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Because the number of uninformed nodes thus shrinks doubly exponentially, within O(log log n) rounds,
the number of remaining uninformed nodes is at most

√
n log4 n, with high probability.

4. Finishing: Finally, once all but
√
n log4 n of the nodes are informed, each node has probability 1− log4 n√

n

of being informed during any one Pull call it makes, and successive rounds are independent. Hence,

after three rounds, the probability of any one node not being informed is at most log12 n
n3/2 , and by a

union bound, all nodes are informed after the additional three rounds with probability at least log16 n
n .

Taking all this together, we have proved that with high probability, all nodes will learn the message
within log3 n + O(log log n) rounds. To analyze the total number of messages sent, we notice that the
startup, quadratic shrinking, and finishing phases take only O(log log n) rounds total, so the total number
of messages sent in those rounds is O(n log log n). During the exponential growth phase, at most n/ log n
nodes are active, so no more than n/ log n messages are sent each round, thus no more than O(n) total. As
a result, the total message complexity is O(n log log n).

We should notice that the protocol, as presented here, is very vulnerable to faults. It needs to be run for
exactly log3 n+O(log log n) rounds. If the number of rounds is Ω((1 + ǫ) log3 n), then Ω(ǫn log n) messages
are sent during those extra ǫ log3 n rounds, violating the goal of O(n log log n) messages. Conversely, if the
number of rounds is O((1− ǫ) log3 n), then with high probability, some nodes will remain uninformed.

Karp et al. [238] show how a more sophisticated “Median Counter” algorithm achieves the same kind of
guarantee while being more resilient to failures.

A second question is how low we can push the number of messages sent. Of course, if we do away with
gossip, and build a tree instead, then n− 1 messages suffice to inform all nodes. Even using uniform gossip,
we can get away with n− 1 messages if we are willing to sacrifice the completion time. A protocol achieving
this would be one where the initial owner of the message is the only one to transmit it, and does so whenever
he calls (or is called by) an uninformed node. This turns the problem into a coupon collector problem: the
message has reached everyone if everyone has called (or been called by) the initial message holder. This
takes Θ(n log n) rounds with high probability [314].

Obviously, this type of protocol goes completely against the idea of using the network in spreading a
message. Karp et al. show that under “reasonable” restrictions on the protocol, ω(n) messages are necessary.
The first result concerns address-oblivious protocols: in each round, a node must decide whether to transmit
to its communication partner(s) without knowing their identity. In particular, nodes do not know if the
communication partner already has the message. Notice that the Push-Pull protocol we analyzed above is
address-oblivious.

Theorem 10.4 ([238]) Any address-oblivious protocol has to send at least Ω(n log log n) messages to inform
all nodes.

Even without the restriction, lower bounds can be proved, trading off the completion time and message
complexity:

Theorem 10.5 ([238]) Any protocol reaching all but O(1) of the nodes in O(log n) rounds, and using
uniform gossip, must send at least ω(n) messages.

An interesting question along the lines of reducing the number of messages sent is how many nodes are
informed, and how many rounds it takes, when each node forwards the message k times after receiving it,
for some constant k (such as k = 2).

10.2 Spreading Multiple Messages

So far, we have seen an analysis for spreading a single message through a network. In reality, this is a
simplistic abstraction: typically, there will be many messages originating at different nodes of the network,
a fact already discussed by Demers et al. [129].

110



When each node has a message that is to be shared with all other nodes, we could consider a protocol
in which each node always forwards all messages it holds. In that case, we are essentially “super-imposing”
the simple gossip protocol for all source messages, so all nodes will learn all messages in O(log n) rounds
with high probability. Unfortunately, the message complexity will be Ω(n2 log log n). Here and in the next
section, we will explore different assumptions/approaches for spreading multiple messages more efficiently.

We first consider the question of how to efficiently spread k messages to all nodes, assuming that each
packet sent can be no larger than one message.

Fernandess and Malkhi [165] gave a protocol carefully choosing which message to forward in each time
step. By doing so, they achieve an optimal bound of O(k + log n) rounds to spread k messages.

An alternative approach was used by Deb, Médard, and Choute [125]: they proposed a protocol based on
network coding and uniform gossip, where messages are “aggregated” by forming random linear combinations.
From these linear combinations, it is then possible to reconstruct the initial messages. The advantage is that
nodes can communicate just one aggregated message at a time, and still eventually collect all the necessary
information. The analysis of Deb et al. gave an upper bound of O(k +

√
k log(k) log(n)) on the number of

rounds. This bound was subsequently improved by Häupler [205] to the optimal O(k + log n) number of
rounds. The analysis, which we will cover in this section, is very elegant and general, applying to a wide
range of graph models and communication protocols (rather than just uniform gossip).

10.2.1 Network Coding

We begin with a brief introduction of network coding. The idea behind network coding is to combine (or
“encode”) messages and transmit the encoded messages over the network in a way that the intended recipient
can decode them, and the required bandwidth is smaller than it would be for sending each message explicitly.
Consider the classic example for network coding in Figure 10.1.

s1

s2

u v

t2

t1

Figure 10.1: A classical example where network coding helps reduce required bandwidth.

The node s1 is trying to send a message m1 to t1, and s2 is trying to send a message m2 to t2. The
bottleneck is the edge (u, v), which is required for the transmission of both messages. Initially, it seems as
though sending the messages would require two rounds as a result. However, a solution is to compute the
bitwise XOR m1 ⊕m2 at u, and send that to v (and from there to t1 and t2). In addition, s1 can send m1

to t2, and s2 can send m2 to t1. These messages appear useless by themselves, but they allow the sinks t1
and t2 to decode their intended messages: t1 takes the XOR of m2 and m1 ⊕m2 to obtain m1; similarly, t2
computes m1 ⊕ (m1 ⊕m2).

111



10.2.2 Random Linear Network Coding Gossip

The idea of Deb et al. [125] is to combine such linear combinations with uniform gossip. More specifically,
nodes compute and forward random linear combinations of messages in each round.

To keep the analysis more general, we consider each messages as a string over Fq = {0, 1, . . . , q−1}, with
addition and multiplication modulo q. q is a prime to ensure that the operations form a field. For intuition,
think of q = 2, which gives binary strings.

There are k initial messages ~m1, ~m2, . . . , ~mk. Each message ~mi is a string of ℓ elements of Fq, and can
therefore be regarded as a vector ~mi ∈ Fℓ

q . (Note that Fℓ
q is a vector space because Fq is a field.) In

particular, if µi ∈ Fq are coefficients, the linear combination
∑

i µi ~mi is also in Fℓ
q .

Each node that starts out with a message ~mi knows which message it starts out with, i.e., it knows the
index i for its message. Each packet sent from one node to another consists of two things: a message ~m ∈ Fℓ

q ,

and a coefficient vector ~µ ∈ Fk
q . The meaning of the coefficient vector is that ~m =

∑

i µi ~mi.
Now consider a node v. The set of all packets (~µ, ~m) that v has received up to time t together span a

subspace Xv (itself a vector space) of the (k + ℓ)-dimensional vector space Fk+ℓ
q . For the analysis, we will

mostly focus on the space Yv spanned by only the ~µ components of the packets that v has received. Initially,
the node holding the message ~mi has Yv,0 as the vector space spanned by ~ei (the vector with 1 in coordinate

i and 0 in all other coordinates); all other nodes have Yv,0 = {~0}.
Consider some round t, and a node v with space Yv. Let d be the dimension of Yv. Then, v must have d

linearly independent vectors ~b1,~b2, . . . ,~bd, forming a (not necessarily orthogonal) basis of Yv. For each ~bi, the

corresponding message ~m′
i is then

∑k
j=1 bi,j ~mj . Then, the (~bi, ~m

′
i) form a basis of Xv as well. Node v then

chooses d i.i.d. uniform elements λ1, λ2, . . . , λd from Fq, and sends the packet
∑d

i=1 λi(~bi, ~m′
i) to another

node. (For uniform gossip, this will be a uniform other node; for other communication protocols, it may be
chosen from some other distribution.)

After nodes receive packets, they add the messages to their Xv and Yv spaces for the next round t + 1.
Once Yv has full dimension k, node v can diagonalize its k linearly independent vectors to specifically
produce the basis ~b1 = ~e1,~b2 = ~e2, . . . ,~bk = ~ek. The associated messages ~m′

i will then equal ~mi, so v will
have reconstructed all messages. The key question is then how long it takes until each node’s vector space
Yv has full dimension k.

10.2.3 Analysis

The analysis of Deb et al.[125] was based on explicitly keeping track of the dimensionality of Yv, showing that
it had to increase with sufficiently high probability in each round. However, this analysis requires dealing
with a lot of correlations regarding which specific messages are held by which nodes; it also does not easily
generalize to communication protocols other than uniform gossip. The key idea in the improved analysis of
Häupler [205] is to focus on the “orthogonal complement”1 of Yv instead of Yv itself; specifically, to show
that the orthogonal complement shrinks sufficiently fast. The key definition is the following:

Definition 10.6 For a vector ~µ ∈ Fk
q , v knows about ~µ iff ~µ is not orthogonal to Yv, i.e., if there exists a

~ν ∈ Yv such that ~µ · ~ν 6= 0.

Notice that “knowing about” ~µ does not mean having received a message containing ~µ, or being able
to decode a message associated with ~µ. Also, not knowing ~µ does not mean not having received ~µ. For
instance, if Yv = {(0, 0), (1, 1)} ∈ F2

2 , and ~µ = (1, 1), then v actually has explicitly received ~µ, yet the inner
product (1, 1) · (1, 1) = 0 (and (0, 0) · (1, 1) = 0, of course). While the notion of “knowing about” ~µ is thus
not directly interpretable in an immediate sense, it is useful in the following sense:

Lemma 10.7 If v knows about every ~µ, then v can decode all messages.

1The term “orthogonal complement”, when applied to vector spaces over the reals, usually implies additional properties.
Here, we use it to simply refer to the set of all vectors whose inner product with all vectors in the sapce is 0.
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Proof. We prove the lemma’s contrapositive. If v cannot decode all messages, then Yv does not contain
all of F ℓ

q , so it cannot have dimension k, i.e., dim(Yv) < k. Because dim(Yv) + dim({~µ | ~µ · ~ν = 0 for all ~ν ∈
Yv}) = k, the dimension of the orthogonal complement of Yv is at least 1. In particular, the orthogonal
complement of Yv contains some non-zero vector ~µ, and by definition, v does not know about ~µ.

Next, we show that knowledge of vectors ~µ spreads fast.

Lemma 10.8 If v knows ~µ and sends a message to u, then with probability at least 1 − 1
q , u afterwards

knows ~µ as well.

Proof. Let ~b1,~b2, . . . ,~bd be an arbitrary basis (set of linearly independent vectors) of Yv. So v sends u a

packet with ~µ′ =
∑d

i=1 λi
~bi, where the λi are i.i.d. uniform from Fq. Because v knows ~µ, ~µ is not orthogonal

to Yv; therefore, the inner product ~µ ·~bi 6= 0 for at least one of the basis vectors ~bi. Without loss of generality,
assume that ~µ ·~bd 6= 0.

Suppose that the λi are chosen such that λd is chosen last, and let α =
∑d−1

i=1 λi · (~bi · ~µ). Because

~µ ·~bd 6= 0, the equation α+ λd(~µ ·~bd) = 0 has exactly one solution for λd, and this particular value of λd is
picked with probability 1/q.

Lemma 10.8 implies that knowledge of vectors ~µ spreads like a message under faulty gossip: with prob-
ability 1/q, the message is not transmitted, but otherwise, the recipient learns it. There are qk messages
that need to be “spread” in this way, and once all of them have reached all nodes, all nodes can decode all
messages.

We will take a union bound over all of these qk messages. In order to succeed in T rounds with probability
at least 1−δ, we then need that the underlying communication protocol (e.g., uniform gossip) spreads a single
message to all nodes in T rounds with probability at least 1− δ · q−k. This is a relatively primitive property
that can often be easily analyzed for different communication protocols: for most, the failure probability
decreases exponentially over time.

Specifically for uniform gossip, the 1/q transmission failure probability in each round slows down the
protocol by a factor q

q−1 . We could redo our earlier analysis for uniform gossip and a single message more
carefully, and indeed prove using similar techniques that the failure probability decreases exponentially in
the number of rounds. In particular, in order to obtain a failure probability of at most δq−k for a single
message then requires O(log n + k log q + log(1/δ)) rounds. Since q is a constant, this gives us the desired
bound of O(k + log n) rounds for spreading k messages, resulting in communication O((k + log n) · ℓ).

10.3 Averaging and Sampling using Gossip

A different approach can be used when it is not the individual messages that are of interest to nodes, but some
aggregate quantity that the network wants to compute from the messages and spread to all nodes. Then,
instead of forwarding each message individually (or using coding), we could perform aggregation within the
network. For instance, assume that each node i just holds one number xi (the number of files, or available
memory, or a temperature measurement), and the network wants to compute the average x̄ = 1

n

∑

i xi of
these numbers. Using a tree, values could be added up (and nodes counted) on the way to the root; the root
could then compute the average, and distribute it back to all nodes using the tree. As we discussed above,
using a tree is not a very fault-tolerant approach, so we want to use gossip instead.

Our gossip-based algorithm is very simple. Each node i maintains only two values, a sum si, and a weight
wi. The sum is initialized to si := xi, and the weight to wi := 1. Then, in each round, each node executes
the following protocol Push-Sum [241]:

10.3.1 Analysis of Averaging using Gossip

One useful fact that we can notice right away about this protocol (and prove easily using induction) is its
property of mass conservation: at any point of the execution, we always have that

∑

i si =
∑

i xi, and
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Algorithm 7 Push-Sum

1: Send the pair (si/2, wi/2) to yourself and a uniformly randomly chosen other node.
2: Let Ji be the set of all nodes that have sent a message to i in this round.
3: The new values are s′i := si/2 +

∑

j∈Ji
sj/2 and w′

i := wi/2 +
∑

j∈Ji
wj/2.

4: Keep track of si/wi as approximation of the average.

∑

i wi = n. The sums and weights get redistributed, but not truly changed. We will prove the following
theorem about the convergence of Push-Sum to the true average.

Theorem 10.9 If all xi are non-negative, then within O(log n + log 1
δ + log 1

ǫ ) rounds, all estimates si/wi

are within (1± ǫ) of the true average x̄ = 1
n

∑

i xi, with probability at least 1− δ.

In order to analyze this protocol, we will track what “share” of each node j’s number xj is currently
contributing to each node’s sum si. So we look at a vector ~vi, in which the jth component vi,j denotes the
fraction of node j’s value that currently is part of node i’s sum. This means that initially, we have vi,i = 1
for all i, and vi,j = 0 for all i 6= j. In this view, our protocol can be expressed as follows:

Algorithm 8 Push-Vector

1: Send the vector 1
2~vi to yourself and a uniformly randomly chosen other node.

2: Let Ji be the set of all nodes that have sent a message to i in this round.
3: The new vector is ~v′i :=

1
2~vi +

∑

j∈Ji

1
2~vj .

This new version of the protocol traces the old version in the following sense (as is easy to observe, and
can be proved by induction on the time steps of the protocol):

Fact 10.10 At any time during the execution of the protocol, and for any node i, we have that si =
∑

j vi,jxj,
and wi =

∑

j vi,j.

Thus, the estimate that node i has is
∑

j vi,jxj
∑

j vi,j
, and we want to show that this quantity converges

exponentially fast to x̄. One way that we could guarantee convergence would be if all vi,j were equal, and
thus equal to 1/n. In that case, we would have exactly the true average. However, this is clearly too much to
hope for: by standard Balls-in-Bins analysis [314], even if they were all equal at some point, one node would
be likely to receive many calls (up to Ω(log n)), and others no call at all, resulting in new values Ω( logn

n )
vs. 1

2n . However, upon closer inspection, we notice that we do not need quite such a strong condition. It
would be enough if, for a fixed i, all vi,j were the same. So we do not need a node’s value to be equally
distributed among all other nodes; all we need is that a node has equally sized shares of everyone else’s
values.

This motivates studying how fast the vectors ~vi converge to multiples of the all-ones vector ~1. In order
to talk about this convergence, we use vt,i,j , ~vt,i, st,i, wt,i etc. to denote the values after t iterations of Push-
Vector. For ease of notation, we will use the fact that wt,i =

∑

j vt,i,j . We then measure the convergence

in terms of the error ∆t,i = maxj | vt,i,j

wt,i
− 1

n |. We will prove the following two parts, giving the theorem

together:

Lemma 10.11 1. The ∆t,i converge to 0 exponentially fast.

2. When the ∆t,i are small, the estimate of the average is good.

Proof. We first prove the (easier) second part of the lemma. Assume that at some point in time t, the
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errors ∆t,i for all i are at most ǫ/n. Then, for each i,

|
∑

j vt,i,jxj

wt,i
− x̄|

|x̄| = n ·
|∑j(

vt,i,j

wt,i
− 1

n )xj |
|∑j xj |

≤ n

|∑j xj |
· (max

j
|vt,i,j
wt,i

− 1

n
|) ·
∑

j

|xj |

≤ ǫ,

where we used the triangle inequality in the numerator for the second step, and the bound on ∆t,i for the
expression in parentheses in the third step. (We also were allowed to cancel the sums over xj values because
all xj were assumed to be non-negative.) Notice that once we prove exponential convergence below, the time
it takes to converge to error ǫ/n is only by an additive O(log n) larger than to converge to ǫ, so we were free
to choose a value of ǫ/n here.

To prove the first part of the lemma, we study a potential function, which measures how “close” to
converged the system is. We have seen such functions before, for instance in the proof of Theorem 8.7. Here,
our potential function will be the sum of variances of the vectors ~vt,i. Formally, we define

Φt =
∑

i,j

(vt,i,j −
wi,t

n
)2.

We will show that this potential function decreases exponentially fast, and that a small value for it implies
good convergence.

Lemma 10.12 The conditional expectation of Φt satisfies E [Φt+1 | Φt = φ] = ( 12 − 1
2n )φ.

Proof. Consider the values vi,j , wi, etc. at time t, and let f(i) denote the random node called by node i
in round t. Then, with all random choices known, node i’s new vector ~v′i and weight w′

i are

~v′i =
1

2
~vi +

1

2

∑

k:f(k)=i

~vk,

w′
i =

1

2
wi +

1

2

∑

k:f(k)=i

wk.

Plugging these values into the new potential Φt+1, we obtain that

Φt+1 =
∑

i,j

(1

2
(vi,j −

wi

n
) +

1

2

∑

k:f(k)=i

(vk,j −
wk

n
)
)2

=
1

4

∑

i,j

(vi,j −
wi

n
)2 +

1

4

∑

i,j

∑

k:f(k)=i

(vk,j −
wk

n
)2 +

1

4

∑

i,j

∑

k:f(k)=i

(vi,j −
wi

n
)(vk,j −

wk

n
)

+
1

4

∑

i,j

∑

k,k′:k 6=k′,f(k)=f(k′)=i

(vk,j −
wk

n
)(vk′,j −

wk′

n
).

Noticing that in the second sum, the term (vk,j − ki

n )2 appears exactly once for each k (namely for the
particular i with f(k) = i), we see that the first two sums are precisely equal to 1

2Φt. Similarly, we can
simplify the fourth sum by noticing that each pair k, k′ with f(k) = f(k′) will appear for exactly one i. So
we simplify

Φt+1 =
1

2
Φt +

1

4

∑

i,j,k

(vi,j −
wi

n
)(vk,j −

wk

n
) · [f(k) = i]

+
1

4

∑

j,k,k′:k 6=k′

(vk,j −
wk

n
)(vk′,j −

wk′

n
) · [f(k) = f(k′)].
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Here, we are using Iverson’s convention [198]: [f(k) = i] :=

{
1 if f(k) = i
0 otherwise

.

In this form, the expectation of Φt+1 is not too difficult to evaluate: we can use linearity of expectation,
and notice that the only terms actually depending on the random choices are [f(k) = i] and [f(k) = f(k′)].
As they are {0, 1} random variables, their expectation is exactly equal to the probability of being 1, which
can be easily seen to be 1/n for both. (For the first one, this is obvious; for the second one, notice that for
any choice of f(k), the probability that f(k′) = f(k) is 1/n, so the same holds overall.) Substituting all of
these, we obtain that

E [Φt+1 | Φt = φ] =
1

2
φ+

1

4

∑

i,j,k

(vi,j −
wi

n
)(vk,j −

wk

n
) · Prob[f(k) = i]

+
1

4

∑

j,k,k′:k 6=k′

(vk,j −
wk

n
)(vk′,j −

wk′

n
) · Prob[f(k) = f(k′)]

=
1

2
φ+

1

4n

∑

i,j,k

(vi,j −
wi

n
)(vk,j −

wk

n
) +

1

4n

∑

j,k,k′:k 6=k′

(vk,j −
wk

n
)(vk′,j −

wk′

n
)

=
1

2
φ+

1

2n

∑

i,j,k

(vi,j −
wi

n
)(vk,j −

wk

n
)− 1

4n

∑

j,k

(vk,j −
wk

n
)2

= (
1

2
− 1

4n
)φ+

1

2n

∑

j

(
∑

i

vi,j −
∑

i

wi

n
)(
∑

k

vk,j −
∑

k

wk

n
)

= (
1

2
− 1

4n
)φ.

In the last step, we used mass conservation, which implied that
∑

i vi,j = 1, and
∑

i wi = n, so that
the second term actually became 0. Two steps earlier, we made the last sum run over all pairs k, k′, and
subtracted out the ones we had added in. We also notice that at that point, both sums are equal, so we
added them up to form the first one. In summary, this proves the lemma about the conditional expectation.

By applying the lemma repeatedly, and using that Φ0 ≤ n, we obtain that E [Φt] ≤ n · 2−t. Thus, after
t = log n + log 1

ǫ̂ rounds, the expected potential is E [Φt] ≤ ǫ̂. Markov’s Inequality [314] states that for any

non-negative random variable X and any value a, we have Prob[X ≥ a] ≤ E[X]
a . Applying it to Φt, and

choosing ǫ̂ = ǫ2 · δ/2 · 2−2τ thus guarantees that with probability at least 1− δ/2, we have Φt ≤ ǫ2 · 2−2τ . In
particular, this bound applies to each term of the sum that constitutes Φt, so |vt,i,j − wt,i

n | ≤ ǫ · 2−τ for all i
and j.

At this point, we have almost finished the proof; however, the quantity that we have just proven to be
small is not quite the error measure ∆t,i we are interested in. We still need to divide by wt,i to get exactly
our error measure, and wt,i could potentially be quite small. This happens for instance when node i has not
received a message from anyone in a while (unlikely, but possible), or when it did receive a message, it was
from another node that had not received a message in a while. At this point, we can leverage the earlier
analysis of the dissemination of a single message.

Look at all nodes at time t − τ . (Notice that our choice of t implies that t ≥ τ , so we are allowed to
do that.) At that point, at least one node ı̂ had weight at least 1. Consider the experiment in which this
node has a “message”, and look at when each node i receives the message. By our previous analysis, and,
more specifically, a theorem by Frieze and Grimmett [174], after τ = 4 log n + log 2

δ steps, all nodes have
received the message after τ steps with probability at least 1 − δ/2. Because the weight in a message is at
worst halved in each round, and similarly while a node simply “holds” the message, we know that at time t,
each node must have weight at least 2−τ with probability at least 1− δ/2. Taking a union bound over both
events considered, and dividing the earlier bound by wi,t ≥ 2−τ , we obtain that at time t, with probability
at least 1− δ, the errors are at most ∆i,t = | vt,i,j

wt,i
− 1

n | ≤ ǫ.
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Finally, a simple inductive proof shows that once the error at all nodes drops below ǫ, it will stay below
ǫ at all nodes deterministically, so the quality of the estimate never gets worse.

To complete the proof, we need to verify how large our t is exactly. Substituting the values of ǫ̂ and τ
into t, we see that it is O(log n+ log 1

ǫ + log 1
δ ). This completes the proof.

10.3.2 Sampling using Gossip

The analysis of the averaging protocol can be easily repurposed to solve another fundamental aggregation
problem: random sampling. Each node i holds a set Mi of mi elements, and the goal is to draw a (nearly)
uniform random sample from M :=

⋃

i Mi. Here, we assume that all the Mi are disjoint, or alternatively,
we consider M as a multiset, and would like elements of higher multiplicity to be drawn with proportionally
higher probability. We write m =

∑

i mi.
The protocol Push-Sample is as simple as Push-Sum. Each node i maintains a sample qi (an element of

M) and a representation ri. Initially, ri = mi, and qi is drawn uniformly at random from Mi. Then, in each
round t, each node executes the following:

Algorithm 9 Push-Sample

1: Send the pair (qi, ri/2) to yourself and a uniformly randomly chosen other node.
2: Let Ji be the set of all nodes that have sent a message to i in this round.
3: Let r′i := ri/2 +

∑

j∈Ji
rj/2.

4: Choose q′i randomly from the set {qj | j ∈ Ji}; specifically, chose qj with probability
rj/2
r′i

.

(That is, choose the sample from j with probability proportional to j’s representation.)
5: Keep track of qi as the sample.

Theorem 10.13 With probability at least 1 − δ, within O(log n + log 1
δ + log 1

ǫ ) rounds, each node i has a
sample qi that is drawn from M with probabilities between 1−ǫ

m and 1+ǫ
m .

Proof. Let qt,i and rt,i denote the sample and representation of node i at step t. We first show by induction
that Prob[qt,i = q0,j ] =

vt,i,j ·mj

rt,i
, where vt,i,j are the entries from the Push-Vector protocol in Section 10.3.

At time 0, this holds because each node always holds its own sample, and r0,i = mi. For the induction step,

Prob[qt+1,i = q0,j ]
IH
=

∑

k∈Jt,i

rt,k/2

rt+1,i
· vt,k,jmj

rt,k
=

mj

rt+1,i
·
∑

k∈Jt,i

1

2
vt,k,j =

mj

rt+1,i
· vt+1,i,j .

Applying Fact 10.10 (with the representations in Push-Sample playing the role of the sums in Push-Sum),
we have that rt,i =

∑

k vt,i,kmk. Thus, the probability that node i holds the sample from node j after t
rounds is exactly

vt,i,jmj∑
k vt,i,kmk

. Because the random choice made initially by node j is independent of the

execution of the rest of the protocol, and j chooses any particular element from Mj with probability 1/mj ,
the probability for i to hold a particular element from M is exactly

vt,i,j∑
k vt,i,kmk

We will use the earlier analysis to show that this ratio converges to 1
m exponentially fast.

By the first part of Lemma 10.11, applied with ǫ′ = ǫ
(2+ǫ)n , for t = O(log n+log 1

ǫ+log 1
δ ), with probability

at least 1− δ, we have | vt,i,j

wt,i
− 1

n | ≤ ǫ′ for all i, j. We assume the high-probability event.

By using the lower bound in the numerator and the upper bound in the denominator, we obtain a lower
bound on the probability; similarly, by using the upper bound in the numerator and the lower bound in the
denominator, we obtain an upper bound. Thus, we obtain the bounds

1/n− ǫ′

m(1/n+ ǫ′)
≤ Prob[qt+1,i = q0,j ] ≤

1/n+ ǫ′

m(1/n− ǫ′)
.

The choice of ǫ′ guarantees that 1− ǫ ≤ 1/n−ǫ′

1/n+ǫ′ and 1/n+ǫ′

1/n−ǫ′ ≤ 1 + ǫ, completing the proof.
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10.4 Further Reading

A survey covering some of the extensive work on gossip was written by Shah [367].

In our analysis of the time to spread a single message to all nodes, we assumed that the communication
graph was complete, i.e., that each node could communicate with each other node. Several papers have
worked on generalizing the analysis to the case when there is a given graph structure restricting which node
pairs can communicate.

For the simplest uniform gossip protocol (where each informed node simply calls and informs a uniformly
random neighbor), Elsässer and Sauerwald [148] give degree-dependent lower bounds of Ω(log n) (where the
base of the logarithm depends on the degree), and an upper bound of O(n log n). This matches a lower
bound for the star graph obtained via the coupon collector problem, and is thus tight in the worst case.

Naturally, for specific classes of graph, much better bounds than Θ(n log n) are possible, even for the
simple randomized broadcast protocol. For instance, Feige et al. [163] give tighter bounds for random graphs
and hypercubes. Chierichetti et al. [99] use expansion-based analysis techniques to prove an upper bound
of O(log2 n) for graphs obtained from preferential attachment (see Section 6.1). Mosk-Aoyama and Shah
[309] prove an upper bound of essentially O( logn

Φ ) for the time to spread a single message in an arbitrary
graph; here, Φ is the conductance of the matrix M determining the call probabilities. For their result, the
authors assume that M is double stochastic. Chierichetti et al. [100] extend this result to uniform gossip
(which leads to matrices that are not doubly stochastic), and obtain bounds polynomial in logn

Φ . This bound
is based on a breakthrough result on graph sampling by Spielman and Teng [370].

For specific classes of graphs, the lower bounds of Karp et al. [238] can also be strengthened. If the
protocol is address oblivious, then for a star, it is easy to see that a message needs at least Ω(n log n)
rounds to reach all nodes. For G(n, p) random graphs with p sufficiently large, Elsässer [147] shows a
lower bound of Ω(n log n/ log log n) on the number of messages required to inform all nodes. Interestingly,
address obliviousness is crucial here; if the nodes have just enough memory to remember the last three other
nodes they called, Elsässer and Sauerwald [149] show that the total number of messages can be reduced to
O(n log log n).

So far, our main goal in this context was to spread the message(s) to all nodes quickly. In many natural
settings, nodes are embedded geographically, and it is important that nodes close to the source obtain the
message first. This may be relevant if the message is an alarm or warning, or if it contains information more
useful locally. The problem of spreading a message to nodes at distance d within time poly-logarithmic in d
(independently of n) is studied in [243]. There, it is shown that if nodes call each other with non-uniform
probability, decreasing polynomially in the distance, then such a poly-logarithmic spreading time is achieved.
Both the distribution and analysis bear some similarity to the analysis of greedy routing in Small-World
Networks in Section 7.3.

As shown in [243], inversely polynomial gossip distributions can be used as a substrate for more complex
types of in-network computation, such as nearest network resources. The problem of resource discovery in
networks has also received attention in the context of Peer-to-Peer networks; many different algorithms have
been proposed (e.g., [206, 267]). Further protocols that can be implemented with inverse polynomial distri-
butions are discussed in [242], which also proves lower bounds on how well uniform gossip could approximate
the same problems.

Analyzing the speed of the diffusion of a message through a network under inversely polynomial distribu-
tions in the distance is also closely related to a problem studied in mathematics and physics under the name
long-range percolation [363]. Here, a graph is generated by embedding the nodes in a metric space (usually,
the D-dimensional grid or torus), and generating a certain number of edges per node, with probability d−r

of reaching distance d. Thus, the model is essentially identical to the small-world model discussed in Section
7.3. Using techniques similar to [243], Benjamini and Berger [41] prove poly-logarithmic bounds on the
diameter of such graphs. Some of these bounds were subsequently improved by Coppersmith et al. [115].
See also the paper by Nguyen and Martel [332] for a discussion.

In our discussions of gossip-based averaging in Section 10.3, we assumed that the communication graph
is complete. The problem of averaging (or more general aggregation of data) is also important in networks
with communication restricted to neighbors. Depending on the degree of nodes, we could continue to assume
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that nodes can only communicate with one neighbor, or relax the condition and let nodes communicate with
all neighbors simultaneously. For the latter case, [241] shows that by averaging appropriately weighted
combinations of the values of all neighbors, a variant of the Push-Sum protocol computes the average, in
time equal to the mixing time of a Markov Chain on the graph. Thus, the fastest convergence is achieved by
choosing the multipliers so as to have the Markov Chain mix as quickly as possible. This problem has been
studied by Boyd et al. [65], who show how to use convex programming to find the fastest mixing Markov
Chain for a given graph.

While [241] shows that the mixing time of the fastest Markov Chain on a graph is an upper bound on
the time to average using gossip, it does not rule out that much faster protocols could exist. A lower bound
is provided by Boyd et al. [67]. Under a slightly more restrictive definition of “gossip algorithm,” they show
that the mixing time of the fastest Markov Chain on the graph essentially provides a lower bound on any
gossip algorithm as well. Consequently, in [66], they study the mixing time of the fastest Markov Chain on
random geometric graphs (which are good models for sensor networks), and show a lower bound of Θ(1/r2)
for nodes with communication range r embedded in a unit square.

Since this bound is fairly slow, and inefficient in terms of requiring Ω(n2) rounds of communication,
Dimakis et al. [136] propose a protocol called geographic gossip. In that protocol, nodes choose a uniformly
random point to route to, and then use greedy multi-hop routing to exchange messages with the closest
node to that point. Messages are rejected with certain probabilities to avoid oversampling nodes with few
nearby other nodes. For this protocol, [136] proves a bound of O((n log n)1.5) on the number of transmissions
required. Assuming parallelism and an appropriate communication radius r, this corresponds to O(1/r1.5)
rounds in the previous model.

Gossip-based algorithms can be used as a substrate for more complex computations beyond message
dissemination and averaging. These include computations of spanning trees [242], various sketches of data
stored at nodes [241] and eigenvectors and eigenvalues of a matrix held in a distributed way at the nodes
[246]. In addition to Astrolabe [385, 386], several system approaches have been proposed using gossip (see,
e.g., [230, 229]).

Finally, while we motivated the gossip problem with an eye on its fault-tolerance via randomization, it
is an interesting question how quickly a message could be spread over a given arbitrary network, under the
constraint that each current message holder can only forward the message to one neighbor in any given
round. This Optimal Broadcast problem is NP-complete. Ravi [348] gave an O(log2 n) approximation, which
was subsequently improved by Bar-Noy et al. [33] to O(log n).
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Chapter 11

Peer-to-Peer Systems and Distributed
Hashing

In Chapter 7, we saw how to search for a node in a network when there is metric information guiding
the search, but the network connectivity is constrained. A similar task arises when the network is used to
deliberately store files or other data, as in the case of Peer-to-Peer (P2P) systems. Peer-to-Peer systems
have become popular for sharing videos, music, and other types of files; they have also led to interesting
research insights combining notions of hashing with network design and search.

Typically, for a variety of reasons (including fault tolerance, legal reasons, scalability, and load balancing),
the files should be distributed over the nodes of the network, and those nodes may join or leave the network.
The key question is then how to organize the link structure of the network and the location of files so that
files are easy and fast to find.

Some of the real-world systems that implemented some of the ideas we will discuss are Freenet [172],
Gnutella [186] and BitTorrent [107]. Our focus will be primarily on research approaches with provable
guarantees, including Chord [374], CAN [347], Pastry [356], Tapestry [408], and Viceroy [284].

In order to divide items between nodes of the network such that (1) the load is roughly balanced across
nodes, and (2) items can be easily retrieved, the key idea is to consider node names and item names as
embedded in a common space, and have nodes store items whose ID is close to their own. Since it is a priori
very plausible that both types of ID could be highly clustered (defeating the goal of load balancing), instead
of the actual node and item IDs, we use hashes. In keeping with the type of analysis typically performed for
hashing, we treat the output of these hash functions as independently random. (Details about the effects
of limited independence can typically be worked out with additional calculations.) As such, the general
approach is based on, and shares significant commonalities with, the idea of consistent hashing [235].

In addition to storing the primary copy, for fault tolerance reason, P2P systems typically store additional
copies at other nodes. Depending on the context and the importance for theoretical properties, we will
sometimes discuss those in the sequel as well.

In order to find a file stored at a node, the node that is looking for a file generates the hash of the ID1

it is looking for, and routes it through the network. To facilitate this routing, in addition to the physical
network, the P2P network contains an overlay network of edges along which file requests are forwarded. The
exact nature of this overlay network is different in different architectures, and will be the central part of our
analysis below.

In the rest of this chapter, we let N denote the number nodes, and M (an upper bound on) the number
of files.

1The assumption here is that a list of files that are available in the network is easily accessible (e.g., because the list is
much shorter than the actual files — which could be, e.g., movies — or that a suitable ID can be easily generated from the
information that the searching node does have about the file it needs.
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11.1 Chord

The first — and perhaps conceptually cleanest — architecture we will analyze is the Chord system [374].
In the Chord system, we think of all IDs (hashes of file and node names) as m-bit strings, which we can
interpret as numbers base 2. Here, m = Ω(max(logN, logM)). We then consider a cycle that embeds these
m-bit strings in increasing order, with wraparound mod 2m. Each node is in charge of storing all files
whose IDs lie below its own ID and that of the next node on the cycle in clockwise order. For example, in
Figure 11.1, node A (with a coordinate of 00000) is in charge of storing all objects with IDs 00000, 00001,
and 00010.

A

B

C

D

E

F

G

H

J

00000

00111

01111

10111

00101

Figure 11.1: An illustration of the Chord architecture.

Each node also knows the ID of the next clockwise node (its successor node) for the purpose of routing
file requests, and the ID of its predecessor node (next node counterclockwise); in Figure 11.1, these edges are
shown (for node A) as double lines Based on the successor pointers, all requests could be routed, but the
number of hops would be linear in the number of nodes. For that reason, in addition to the successor and
predecessor pointers, each node also stores Θ(m) shortcut links. For a node with ID x, the shortcut link at
level ℓ = 1, 2, . . . ,m goes to the next node after (x+2ℓ) mod 2m on the cycle. We call this node the level-ℓ
neighbor of x, and denote it by Nℓ(x). In Figure 11.1, these edges are shown for node A as single lines (to
node C,D,F ).

The routing protocol is now quite simple. If node x wants to route to the node that holds file y, it
forwards the request along the longest shortcut link that does not overshoot y. In other words, it routes
along the level ℓ link such that Nℓ(x) ≤ y < Nℓ+1(x), where inequalities are taken to be suitably modulo
2m.

To see why this approach can with high probability route in O(m) steps, consider some ID y that node
x is trying to route to. Let ℓ be such that x+ 2ℓ−1 ≤ y < x+ 2ℓ. If N/2m−ℓ = Ω(m) (i.e., there are enough
nodes such that an interval of length 2ℓ contains Ω(m) nodes in expectation), then by standard occupancy
bounds, with sufficiently high probability, there is at least one node in the interval [x+y

2 , y], meaning that
the routing process will halve the distance to y, which can happen at most m times. On the other hand,
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if N/2m−ℓ = O(m), then in expectation, only O(m) nodes should lie between x and the destination. By
Chernoff Bounds, with high probability, the actual number of nodes between x and y will be O(m) as well,
so even without using any shortcut links at higher levels, the routing will succeed in O(m) hops.

So Chord is a construction of distributed hash tables using routing tables of size O(m) and routing in
O(m) hops.

To insert a new node into the system, the node first determines its (hash) ID x, and then tries to route
to a “file” with ID x. By doing so, it will find its predecessor x′ node on the cycle, who can inform it of its
successor. It can thus easily insert itself into the cycle, and obtain files from x′ that it will henceforth host.

Notice that the approach here is quite similar to the maintenance of a randomized skip list data structure.

11.2 Viceroy

If we want to avoid the logarithmic degrees of Θ(m) in the Chord construction, we can use some insights we
gained in Chapter 7 on small world graphs, combined with ideas underlying Butterfly Graphs and skips lists.
We will see how the Viceroy [284] approach reduces the degree to O(1). To see why small world models can
be useful to guide our intuition, notice that the graphs we studied in Chapter 7 had constant degree, and
long-range links were equally likely (probability Ω(1/ log n)) to be at any “scale,” in the following sense: with
probability Ω(1/ log n), the link was such that following it (at least) halved the distance to the destination.
This is very similar to how our analysis sketch for Chord in Section 11.1 worked.

The second motivation for the Viceroy approach is the Butterfly Graph architecture [276]. Butterfly
graphs are layered graphs with n nodes in each layer, log n layers, and constant node degrees. In layer i, the
edges to layer i+1 correspond to flipping bit i in the binary representation of the node ID. (See Figure 11.2.)
Butterfly graphs are a useful topology for routing and have been used in the design of parallel algorithms
and architectures. Notice that by contracting all layers into one, one exactly obtains a hypercube.

Figure 11.2: The butterfly graph on n = 8 nodes.

To take advantage of the insights/motivations discussed above, the main added feature of Viceroy com-
pared to Chord is that each node x chooses a uniformly random level (or label) ℓx ∈ {0, 1, . . . ,m−1}. Then,
instead of having long-distance links at each level, it will only have one link at level ℓx. More specifically,
this level-ℓx edge will go to the next node y at level ℓy = ℓx−1 after position (x+2ℓx) mod 2m on the cycle.
In addition to this one level-ℓx edge, node x also maintains edges to the closest (clockwise) level-(ℓx−1) and
level-(ℓx +1) nodes (if they exist), as well as its predecessor and successor. We call the first two of these the
level change edges. Thus, each node has outdegree (and thus routing table size) at most 5. The key useful
property of this construction is that the next node at any level ℓ can be found fast:
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Lemma 11.1 Let x be any node, and ℓ any level. Finding the next (clockwise) level-ℓ node x′ from x takes
O(m) steps with high probability.

Proof. Because levels are i.i.d. uniform from {0, . . . ,m−1}, simply following successor pointers, the waiting
time to find a node of level ℓ is distributed as a geometric random variable with mean m, and thus sharply
concentrated.

To search for a key y starting from node x, the first step is to find the closest level-(m − 1) node x′

clockwise after x. By Lemma 11.1, this takes O(m) steps with high probability. Then, for each step, when
at some node x, follow the level-ℓx edge, unless it would overshoot y by more than O(m), in which case
follow the level change edge to level ℓx − 1. If even the level change edge would overshoot y, then simply
follow successor edges until y is found. Notice that in either the level-ℓx edge case or the level change case,
the next step always takes us to a level-(ℓx − 1) node.

We show that this routing approach maintains the invariant that when the routing process is at a level-ℓ
node x, then y − x < 2ℓ+1. The proof is by induction, the base case being trivial. First, if even the level
change edge would overshoot y, that means that there is no node of level ℓ − 1 between x and y. Then,
with high probability, y is within O(m) steps of x, so using successor edges takes O(m) steps. Similarly, if
the level-ℓ edge overshoots y, but only by O(m), then after following the edge, it takes at most O(m) steps
along predecessor edges to find y. Otherwise, we consider two cases.

If y − x ≥ 2ℓ, then by Lemma 11.1, with high probability, the level-ℓ edge does not overshoot y by
more than O(m). The case of overshooting by O(m) was covered above; otherwise, taking the level-ℓ
edge reduces the distance by at least 2ℓ, and the induction hypothesis holds.

If y − x < 2ℓ, then the induction hypothesis holds even without taking an edge, and since taking an
edge further reduces the distance, it holds after taking the level change edge.

11.3 CAN

The CAN (Content Addressable Network) architecture was proposed in [347]. At a high level, it uses a similar
idea to Chord. However, rather than thinking of the nodes as forming essentially a hypercube of dimension
m = Ω(logM) (see the discussion of contracting the Butterfly Graph), CAN embeds nodes into a more low-
dimensional space. This allows for faster routing, at the cost of larger routing tables. The main argument
in favor of CAN is that each hop of routing in a large decentralized system will take significant time, while
routing tables are stored locally, so their size is secondary. In particular, instead of the (O(logM), O(logM))
tradeoff of Chord (or the (O(1), O(logM)) tradeoff of Viceroy) for (routing table, path length), CAN argues
for a tradeoff of (O(poly(M), O(1))), so long as poly(M) grows sufficiently slowly.

As mentioned above, the space into which all IDs are hashed is the d-dimensional space {0, 1, . . . ,M1/d}d.
Each node is again assigned a range of items, which is a hyper-rectangle in this grid. For a simple illustration
in d = 2 dimensions, see Figure 11.3. In this figure, for example, node A is in charge of the square [0, 3]2

of document IDs, while G is in charge of the rectangle [4, 8] × [6, 8]. Note that some IDs (such as (4, 4) or
(0, 7)) are stored at multiple nodes.

Each node maintains a routing table with all addresses that differ from its own coordinates in exactly
one coordinate. For instance, in Figure 11.3, the routing table for node A contains the node B (for IDs
of the form [0, 3] × [4, 7]), the node C (for IDs of the form [0, 3] × [7, 8]), the node D (for IDs of the form
[4, 6] × [0, 3]), the node E (for IDs of the form [7, 8] × [0, 3]), and the node F (for IDs (4, 3), (5, 3), (6, 3)).
In general, the routing table has size at most O(d ·M2/d) (because for each of d dimensions, a node has at
most M1/d coordinates in its range; and for each of those, there are at most M1/d other coordinate entries
for which a routing entry needs to be stored. Typically, the size will be more like O(d ·M1/d).

To route a request for a file with a given d-dimensional ID, nodes correct the coordinates one by one
from their own ID(s). For example, in Figure 11.3, suppose that node A were receiving a request for (6, 6).
It might route it to node B (since B is in charge of — say — (0, 6) or (2, 6)), to node D (because D is in
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Figure 11.3: An illustration of the CAN architecture with d = 2 dimensions.

charge of (6, 0), or (6, 2)), or to node F (because F is in charge of (6, 3)). Those nodes would then all have G
in their routing tables for the coordinate (6, 6), and be able to forward the request directly to G. Generally,
in d dimensions, it takes at most d steps to fix all digits, meaning that routing takes O(d) steps.

As mentioned above, the approach advocated by CAN is to choose d small (say, d = 2 or d = 3), and
incur larger routing tables to be able to route in few steps. For instance, for d = 3, even a network with 1012

nodes only needs routing tables of size about 30000, while allowing routing in at most 3 hops.

11.4 Finding local copies

So far, the goal of the constructions we analyzed was to achieve a good tradeoff between the degrees of nodes
(size of the routing tables) and the number of hope that it would take to find a particular object. Beyond
the number of hops, an additional consideration is the total length of the path that the request for an object
traverses. This objective assumes that the nodes live in some metric space, and is motivated if we associate
routing latency with distance in the metric space. Roughly speaking, the goal is as follows: if a node v has a
copy of the object it needs at some distance r, then the total length of all the hops that the request traverses
should be O(r). We consider an approach due to Plaxton, Rajaraman, and Richa [341].

11.4.1 The construction

The space is defined by a metric distance function d(v, v′) defined on node (or ID) pairs. We assume that
the metric space grows polynomially, so that each ball B(v, r) of radius r around a node v contains O(rα)
nodes, for some constant α. Polynomial growth is satisfied, for instance, if the nodes are embedded in some
α-dimensional Euclidean space.

The high-level idea of the construction is similar to the one for Chord we saw in Section 11.1. As
with Chord, we consider node names xv to be strings of length L = O(logN), written using digits Σ =
{0, 1, . . . , b− 1}, for some suitable value of b to be determined later. (For now, think of b = 2.)

For strings x, y (IDs of nodes or files), we say that x and y match in the first i digits if xi′ = yi′ for all
i′ ≤ i. We write Vv,i,j = {u | xu and xv match in the first i− 1 digits, and digit i of xu equals j.}. Then,
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we let Xv,i,j contain the c closest nodes to v (with respect to d) from Vv,i,j , or all of Vv,i,j , if it contains at
most c nodes, for a constant c we determine later. In other words, Xv,i,j contains the c closest nodes to v
whose ID matches that of v in the first i− 1 digits, and has j in its ith digit (while later digits i′ > i can be
arbitrary). Thus, the routing tables have size O(bcL). Whenever a node v′ is in a routing table for node v,
it also maintains a back pointer, i.e., each node is aware of all routing tables it is a part of.

Each file (with ID y) is stored at (all) nodes x matching the longest prefix of y; for much of the analysis,
we will pretend that there is a node with ID exactly y, or that there exists a unique node with the longest
prefix match. (We will revisit this issue in Section 11.5.) In addition, if node v stores a file y, it will also
store a copy of the file at each neighbor in any of the Xv,i,j ; thus, each file is stored at O(bcL) nodes.

Suppose that a node v with ID x is looking for a file with ID y. First, x checks with all of its O(bcL)
neighbors if they have the file; if so, the request is routed to that neighbor. Otherwise, suppose that x differs
from y in digit i, and that y has a value of j in digit i. Then, x forwards the request to the closest node (in
terms of the distances d) in Xv,i,j ; that node continues in the same way.

11.4.2 Analysis

In our analysis, we will be imprecise in a number of ways. In particular, we will usually just consider
expectations of random variables, and pretend that the variables are equal (or close enough to) their ex-
pectations. Similarly, we will pretend that high-probability events always happen, and make a number of
similar simplifications. A detailed analysis, keeping track of all cases and making tail bounds explicit, would
be significantly more technical, and can be found in [341].

As a first observation, notice that the distance from a node v to neighbors matching the first i digits of
its ID increases exponentially in i.

Lemma 11.2 The closest node to v whose ID matches that of v in the first i digits is at distance about
O(bi/α). The cth closest node to v whose ID matches that of v in the first i digits is at distance about
O((cbi)1/α).

Proof Sketch. The expected fraction of nodes whose ID agrees with x in the first i digits is b−i. The
locations of nodes (in the metric space) and their IDs are independent. Thus, to collect at least c such nodes
for Xv,i,j , in expectation, one needs to consider the closest cbi nodes. Those nodes — assuming that the
metric space is roughly uniform — will be at distance O((cbi)1/α).

Consider a file request with ID y, and a current node v with ID x. Let v̂ be the node closest to v (in
terms of the metric space) holding a copy of the file with ID y, and let x̂ be its ID. Let i be such that the
smallest ball containing v and v̂ contains approximately bi nodes. Thus, the distance between v and v̂ is
approximately bi/α.

We assume that x and x̂ match in the first i− 1 digits, and use j to denote the ith digit of y (and thus
also of x̂). By Lemma 11.2, the lengths of the hops in routing increase exponentially in the hop number.
Therefore, at the cost of a constant factor, we can disregard all the routing steps until the request reached
v, and focus only on the step originating with v.

Let vi be the closest neighbor of v whose ID matches that of v̂ in the first i digits. Recall that x and
x̂ match in the first i − 1 digits, so vi ∈ Xv,i,j . By Lemma 11.2, the distance between v and vi is about
b(i−1)/α.

Next, we want to argue that vi is also in the routing table of v̂, and thus holds a copy of the request
with ID y. (Recall that a node which is assigned a file also stores it at each neighbor.) Because the ID of vi
matches with x̂ for (at least) the first i digits, it is a candidate for Xv̂,i′,j′ for some i′ ≥ i + 1 and some j′.
It will be included in such a set unless there are at least c candidates that are closer to v̂ than vi.

By triangle inequality, the distance from v̂ to vi is at most the distance from v̂ to v plus the distance
from v to vi, so at most bi/α + b(i−1)/α ≤ b(i+1)/α. The ball B(v̂, b(i+1)/α) contains about Θ(bi+1) nodes. Of
these, in expectation about Θ(bi+1 · b−i) = Θ(b) match the first i digits of x̂, and with high probability, at
most Θ(b2) do. So with c = Ω(b2), with sufficiently high probability, vi will indeed be a neighbor of v̂.
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11.5 Tapestry, and Dealing with Node Sparseness

For the analysis in Section 11.4, we assumed that for each file ID y, there was a unique node to store y at.
The simplest view of this assumption is when there is a unique node v whose ID xv = y; more generally,
the analysis applies when there is a unique node with longest matching prefix. (The reason is that for the
analysis, we can simply pretend that all IDs are truncated at the corresponding digit.)

To avoid ambiguity about which node holds a file, we can use an approach similar to Chord or Probing
in hashing: consider an ID y = y1y2y3 · · · yL. When inserting the file with ID, first route to fix (at least)
one digit at a time, as described in Section 11.4. When some digit yi is not matched by any neighbor of
the current node v, try replacing the ith digit with yi + 1, yi + 2, . . . until a match is made. Route to the
corresponding node and continue routing from there. This approach essentially routes y to the next larger ID
x ≥ y that is actually present in the system. However, doing so makes maintaining routing tables non-trivial,
which is the focus of the Tapestry [408] architecture, and outlined in this section.

For any string β (of length at most L, the maximum number of digits), we say that there is a hole at β
if no node name starts with β. We say that a prefix β of length i is sparse if there is at least one digit xi+1

such that the concatenation beta · xi+1 is a hole.
Consider a prefix β of length i, such that t nodes have IDs starting with β. Then, for any particular digit

xi+1, the probability at least one node has prefix β · xi+1 is at least 1 − (1 − 1/b)t. When t ≥ b logN , this
probability is at least 1− 1/N . So if β is a sparse prefix, then with high probability, at most b logN nodes
have a prefix of β. Therefore, at an overhead of at most O(b logN), node v can augment its routing table
with all node v’ with prefix β, for every sparse prefix β of its node ID x.

Now consider a new node v with ID x which is inserting itself. Suppose that v fails at some node v′ with
ID x′. Say that it managed to match a prefix β of i digits (which is common between x and x′), but the
routing table of v′ contains no node with ID prefix β ·xi+1. Then, β is sparse, so with high probability, there
are only O(b logN) nodes total with prefix β, and they are all stored in the routing table of v′, whence v
can copy them. For shorter prefixes, v can use routing tables it saw along the path to v′. We now specify in
more detail how the routing tables are assembled.

To motivate the subsequent approach, assume that the metric d has growth bounded by γ, so that
|B(v, 2r)| ≤ γ|B(v, r)|. In choosing the base b of the node IDs, we will ensure that b > γ2.

Let c = Θ(logN) be the number of closest neighbors included in Xv,i,j . Let Bi be the smallest ball
around v containing at least k nodes u whose prefix matches x in (at least) the first i digits. Let δi be the
radius of Bi. We first show that δi grows fast as a function of i.

Lemma 11.3 δi+1 > 4δi.

Proof Sketch. As in Lemma 11.2, we use that roughly a 1/bi fraction of nodes match the first i digits of
x. Thus, a ball containing k matching nodes will contain about |Bi| ≈ kbi nodes. A ball with radius 4δi
contains at most γ2kbi < kbi+1 nodes (because we chose b > γ2). Thus, a ball containing at least k nodes
matching i+ 1 digits must have radius more than 4δi.

While it takes a significantly larger radius to have k nodes matching i + 1 digits with v, with high
probability, at least one node in Bi does match i+ 1 digits with v:

Lemma 11.4 With high probability, Bi contains at least one node matching the first i digits of x.

Proof Sketch. The probability that no node in Bi matches i+ 1 digits of x is at most (1− b−(i+1))k·b
i ≤

e−k/b, which is small because b is a constant while k = Θ(logN).

Return to our node v trying to insert itself. Let v′ be a node at distance at most δi from v, whose ID
x′ matches x in the first i digits, but not in digit i + 1. This means that v′ should really be in the routing
table for v (because it is among the c closest prefix matches), so we need to show that v will learn about v′.

By Lemma 11.4, there is a node u′ at distance at most δi from v that shares a prefix of length i+1 with
v. By triangle inequality, u′ is at distance at most 2δi from v′. Among all nodes that share a prefix of length

127



i+1 with v, let u be the one closest to v′. Because u′ is a candidate, the distance from v′ to u is at most 2δi,
so the distance from v to u is at most d(v, u) ≤ d(v, v′) + d(v′, u) ≤ 2δi + δi = 3δi < δi+1, by Lemma 11.3.
Therefore, we get that u ∈ Bi+1.

Because u ∈ Bi+1, v has learned about u, simply from copying routing tables as it routes the ID x. And
because u is the closest node to v′ among all nodes with ID prefix x1x2 · · ·xixi+1 (it matches the first i digits
with v′), u must be in Xv′,i,xi+1

; in particular, v′ has u in its routing table, and because we also maintain
back pointers for routing tables, u knows about v′ as well.

The high-level idea of the insertion protocol at a node v with ID x is now the following:

Routing tables are assembled from larger i to smaller i.

For each of the c = Θ(logN) closest nodes matching the first i + 1 digits of x, collect their c nearest
neighbors matching the first i digits of x.

Form Vv,i,j =
⋃

v′ Xv′,i,j , i.e., merge all of the routing tables from these nodes.

Let Xv,i,j contain the c nodes of Vv,i,j, closest to v.

Continue to the next smaller i, by obtaining routing tables from the nodes in Xv,i,j .
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[122] Jean-Charles de Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des
Sciences, Paris, pages 657–665, 1784.

[123] M. J. A. Nicolas de Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues
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[315] Hervé Moulin. On strategy-proofness and single peakedness. Public Choice, 35:437–455, 1980.

[316] Harikrishna Narasimhan, David C. Parkes, and Yaron Singer. Learnability of influence in networks.
In Proc. 29th Advances in Neural Information Processing Systems, pages 3168–3176, 2015.

[317] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of the approximations
for maximizing submodular set functions. Mathematical Programming, 14:265–294, 1978.

[318] Yurii Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization Methods
and Software, 9:141–160, 1998.

[319] Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic cascades. In Proc. 2012 ACM
Sigmetrics Conf. on Measurement and Modeling of Computer Systems, pages 211–222, 2012.

[320] Jennifer Neville and David Jensen. Relational dependency networks. J. of Machine Learning Research,
8:653–692, 2007.

[321] Mark E. J. Newman. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA,
98:404–409, 2001.

[322] Mark E. J. Newman. The spread of epidemic disease on networks. Physical Review E, 66, 2002.

[323] Mark E. J. Newman. Properties of highly clustered networks. Physical Review E, 68, 2003.

145



[324] Mark E. J. Newman. Fast algorithm for detecting community structure in networks. Physical Review
E, 69, 2004.

[325] Mark E. J. Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical Review E, 74:036104, 2006.

[326] Mark E. J. Newman. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA,
103:8577–8582, 2006.
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