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To see a more complex application of Chernoff and Union Bounds, we will consider a randomized ap-
proximation algorithm for a routing problem trying to minimize congestion. We are given a (directed) graph
G = (V,E), with source-sink pairs (si, ti). Each pair should be connected with a single path Pi. The
congestion (or load) Le of an edge e is the number of paths Pi using e, and our goal is to minimize the
maximum load of any edge maxe Le. This problem is NP-complete, since even deciding if it can be solved
with maximum load 1 is the edge-disjoint paths problem.

We will derive an approximation algorithm based on LP rounding. To start, we phrase the problem as
an ILP with exponentially many variables. For each pair (si, ti), and each si-ti path P , we have a variable
xi,P : if xi,P = 1, this means that the pair (si, ti) uses the path P to connect; otherwise, it does not. We also
have one more variable, L, the maximum load of any edge. Thus, we get the following ILP:

Minimize L
subject to

∑
P xi,P = 1 for all i

L ≥
∑

i

∑
P :e∈P xi,P for all e

L ≥ 1
xi,P ≥ 0 for all i, P
xi,P ∈ {0, 1} for all i, P.

The first constraint states that each pair must select exactly one path. The second constraint says that
L is at least the maximum load of any edge. Because the objective is to minimize L, it will not be any
larger than necessary, i.e., equal to the maximum load. The final two constraints are just the standard
non-negativity and integrality constraints.

The third constraint is redundant for the integer LP, since any integer solution will have L ≥ 1. However,
we use it to strengthen the LP. Otherwise, the integrality gap will be very large, as we can see with an
example with just one si-ti pair, but with m parallel edges from si to ti (or two-edge paths). A fractional
solution to this instance could assign xi,P = 1/m to each of these parallel edges, for a load of 1/m. The
integral solution must pick one edge, and thus the integrality gap is at least m. The L ≥ 1 constraint rules
out this fractional solution.

As usual, we drop the integrality constraint. However, it is not clear how to solve an LP with exponentially
many variables. We saw before that exponentially many constraints are not a problem so long as we have
membership and separation oracles. But exponentially many variables are: among others, even writing down
or reading the solution would take exponential time. However, we notice that the fractional LP really just
describes sending one unit of flow from each si to the corresponding ti, and minimizing the maximum flow
through any edge. Thus, we can rewrite the fractional LP as follows:

Minimize L
subject to

∑
e out of si

fi,e = 1 for all i∑
e out of v fi,e =

∑
e into v fi,e for all i, v 6= si, ti

L ≥
∑

i fi,e for all e
L ≥ 1
fi,e ≥ 0 for all i, e
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The fractional multi-commodity LP can now be solved in polynomial time, and the variables xi,P we
really are interested in can be found from the flows fi,e using path decomposition of each fi in polynomial
time. Notice that this only gives polynomially many non-zero values xi,P .

To decide on one path for each si-ti pair, we observe that paths with larger xi,P values are better
candidates for the path Pi, but we shouldn’t simply commit to the single largest xi,P value, as that might
overload one edge with many slightly larger values. Instead, we interpret the xi,P values as probabilities.
For each si-ti pair, we independently choose one path P with probability xi,P . That is, we divide the [0, 1]
interval into disjoint intervals of length xi,P , and label them with the corresponding path P . Then, we
choose a uniformly random number from [0, 1], and pick the path P corresponding to the chosen point. This
defines a polynomial time algorithm picking exactly one path for each pair.

To analyze the approximation guarantee, we focus on one edge e at a time. Let Xe be the load on edge
e, and write Xi,e for the indicator random variable which is 1 if pair i connects via a path using edge e,
and 0 otherwise. Thus, Xe =

∑
i Xi,e is a sum of indicator random variables. Notice that E [Xi,e] = fi,e, so

E [Xe] =
∑

i fi,e ≤ L.
To show that Xe does not deviate much from its expectation, we use the Chernoff Bound. Notice that

the Xi,e are indeed independent indicator variables. Thus, Prob[Xe ≥ (1 + δ)L] < ( eδ

(1+δ)1+δ )L for any δ.

Because L ≥ 1 by the added (strengthening) LP constraint, using the same analysis as in Chapter 13.10
of the textbook, we see that δ = Θ( log m

log log m
) is sufficient to guarantee that Prob[Xe ≥ (1 + δ)L] < 1

m2 .

We can then take a Union Bound over all m edges, and obtain that with probability at least 1 − 1/m,
the randomized rounding will give a set of paths with maximum load at most L · O( log m

log log m
). That is,

the algorithm is an O( log m
log log m

) approximation. Notice also that by the same type of analysis as in Section

13.10, whenever the fractional solution L is large (say, at least 16 log m), the algorithm actually gives a
constant-factor approximation.
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