A (very) brief introduction to Game Theory

David Kempe
November 22, 2018

Abstract

This is an absolutely minimal introduction to game theory, with a focus on (mostly zero-sum) matrix
games and equilibria thereof. It then goes on to relate equilibria to linear programming, and to lower
bounds for randomized algorithms. Any reader who wants a more comprehensive or better introduction
is referred to several classic and new books on the subject, listed below.

1 Basics of Game Theory

Game theory is a framework (or set of tools) for reasoning about the outcomes of interactions between agents
(also called players) who pursue goals that may not be aligned with each other, and whose actions affect each
other. A lot of interactions can be fruitfully viewed through the lens and analysis techniques of game theory,
including economic interactions between individuals or companies, social interactions, and many scenarios
in which individuals compete for limited resources (such as traffic, access to desirable locations, and many
others).

Typically, there is a set of agents, and one specifies what the possible actions and interactions are, as well
as how they jointly affect the wtility of each agent, which is a suitable measure of how “happy” the agent is
with the outcome. Defining the “right” utility for a real-world scenario is of course highly non-trivial.

Another important aspect of specifying a game-theoretic interaction is the knowledge that players have
about the utility (which may depend on unobservable factors), and about each other. Beyond that, typically,
classical game theory assumes that players are rational and capable of identifying which action is best for
them, given the actions chosen by other players. Naturally, this assumption is questionable (though often
necessary to derive mathematical insights), and a large body of work studies various deviations from this
assumption, often under the name “behavioral game theory.”

Yet another important consideration is what we would consider the “outcome” of a game. If our goal
is to analyze or evaluate the outcomes, we need to specify what we mean by this. There are a number of
different notions, appropriate for different types of games, and we will discuss some of them below.

When evaluating the outcome of a game, we are often interested in how well some aggregate “goal” is
met, such as the total utility of all agents, or other measures of social benefit. The presence of selfish agents
will typically lead to a worse societal outcome than if some benevolent powerful authority chose the actions
for everyone. The resulting loss in overall utility has been analyzed a lot, and is somewhat akin to the notion
of approximation algorithms. We will discuss it a bit more below.

Another level beyond merely analyzing games is to design the game in the first place. Often, there is a
principal entity (e.g., government, owner of a site, etc.) who has the power to define some of the rules of
the game, which may include the available actions or utilities of the agents. For instance, think of a traffic
designer who may choose whether to put carpool lanes or paid car lanes on a freeway, or how high to set
fines for violating the rules governing those lanes, or how often to have police patrol them. In so doing, the
traffic designer will change the payoff for using carpool lanes, and thus the outcome of the game when the
players subsequently act selfishly. Generally, this area is called mechanism design. It can be considered as
akin to algorithm design, except the algorithm is going to be jointly executed by multiple selfish agents.

2 Two-Player Matrix Games and Beyond

Perhaps the simplest kind of game is two-player matrix games; if the number of actions for each player is
small enough, one can explicitly write down the utility to each player as a matrix. Such games are even
simpler when they are strictly competitive, in the sense that one player’s gain is exactly the other’s loss.
Such games are called zero-sum games, because the sum of the payoffs of the two players is always 0. A very
familiar example is Rock-Paper Scissors, with payoffs given in Table 1:

R|P
R|O|-1]1
P|1]0]-1
S|-1|1]-1

Table 1: The payoff matrix A for Rock-Paper-Scissor

We have two players, often called the row player and the column player. Let’s call them Rohit and
Colette. The matrix A gives Rohit’s payoff when he plays the strategy given by the name of the row, and
Colette plays the strategy given by the name of the column. Because the game is zero-sum (there’s a loser
and a winner, or a tie), Colette’s payoff is the negative of the given values.

Not all games are zero-sum, and not all games have the same number (or set) of strategies for both
players. Table 2 is another example of a game, which we will call “Beach or Mountain.”

B | M
B | 31 | 3.3
M| 33| 13
H| 33|33

Table 2: The payoff matrices Ar, Ac for “Beach or Mountain”

Rohit and Colette want to spend the day together. Each of them can choose to go to either the beach
of the mountains. In addition, Rohit might also choose to stay home. If they go to different places, both
are unhappy and get utility -3. If they both go to the beach, then Rohit is very happy, while Colette is
somewhat happy. If they both go to the mountains, then Colette is very happy, while Rohit is somewhat
happy.

Here, the two players have different matrices (which we wrote by comma separation in the table); hence,
such general games are called bimatriz games.

Naturally, we can extend these ideas to games with more than 2 players. In general, we might have n
players, each having an n-dimensional tensor (generalization of a matrix) A; giving the payoff of the player
for any combination of strategies played by the n players. Typically, when the number of players gets large,
games are rarely specified in this way — if nothing else, even if each player only has two strategies, each
tensor would have 2" entries. Games with a large number of players typically exhibit a lot of structure,
so the payoffs are defined in different ways. Particularly common classes are graphical games, in which a
player’s utility only depends on the actions of her neighbors in a graph, and anonymous games, in which
a player’s payoff only depends on the number, but not the identity of other players playing each possible
strategy. As an example, when you drive somewhere, you mostly care about how many other cars are on
the road, but not which specific people are driving on the road with you.

3 Game Outcomes and Equilibria

What would we consider possible “outcomes” of Rock-Paper-Scissors? Let’s say that just one round of the
game is played. If Rohit has to play first, then whatever action he chooses, Colette will choose an action
that makes him lose. Similarly, if Colette goes first, she always loses. Typically, we consider game play
as simultaneous, unless otherwise specified. But what would be a suitable definition of the outcome of
simultaneous play here? We said earlier that we assume that players are rational, i.e., capable of choosing an
action that is best for them. The problem is that what is best for Rohit depends on what Colette is doing,
and vice versa. That is, neither really wants to commit to a strategy without knowing what the other is
doing. If we were considering a dynamic, they would continuously update their strategy after hearing what
the other is doing.

If we were looking for something that can be considered a “final” outcome, it seems reasonable that it
should be “stable,” in the sense that neither player would want to change their strategy, knowing what the
other player is doing. Such outcomes are called equilibria of the game.! What we just saw is that there is no
equilibrium for Rock-Paper-Scissors, because at least one player will always want to change their strategy.

In order to be able to still define equilibria, one workaround is to allow the players to randomize their
strategies. That is, Rohit (or Colette) does not have to commit to playing one of Rock, Paper, Scissors, but
instead can commit to something like “I will play each with probability %”7 or “I will play each of Rock,
Paper with probability %, and Scissors with probability %.” That is, each player’s strategy space is now the
set of all probability distributions over actions.

We can now define equilibria similarly, except we use the much larger set of distributions as strategy sets.
We call these equilibria mized equilibria, and to distinguish equilibria in which players cannot randomize, we
call those pure equilibria. We saw earlier that Rock-Paper-Scissors does not have any pure equilibria, but it
does have a mixed equilibrium: each of Rohit and Colette chooses each strategy with probability % Now,
we can see that neither of them can do strictly better by changing strategies.

3.1 Existence and Computation of Nash equilibria

The obvious question is now whether every game has a mixed equilibrium once we allow randomization.
This question was famously answered affirmatively by Nash:

Theorem 1 (Nash [11]) Every game with a finite number of players and a finite number of strategies per
player has a mized equilibrium.

In Nash’s honor, equilibria of such games are now typically called Nash equilibria. Subsequent to Nash’s
theorem, Theorem 1 has been generalized beyond finite numbers of players and strategies. Generalizations
typically involve compact strategy spaces and continuous utility functions; see [6] for a very general version.

Nash’s proof is inherently non-constructive, relying on Brouwer’s Fixed Point Theorem. Essentially,
the argument shows that a sequence of suitable updates must eventually converge to an equilibrium. In
particular to computer scientists, this naturally raises the question of whether one can actually find a Nash
equilibrium efficiently. This question cannot be NP-complete, as the decision problem “Does this game have
a Nash equilibrium?” is trivial: the answer is always “Yes.” While one can instead ask about the existence
of Nash equilibria with certain additional properties, this would deviate from the original question: find any
Nash equilibrium.

To address this question more formally, Papadimitriou [14] defined complexity classes for problems in
which one tries to find an object whose existence is guaranteed by certain non-constructive proofs which
can be reduced to an abstract search problem in a graph. Most relevant here is the class PPAD, which
contains variants of Brouwer’s Fixed Point Theorem, the Nash Equilibrium problem, and several others.
Using a suitable notion of reduction, Daskalakis, Goldberg and Papadimitriou and Chen and Deng proved
the following;:

Lone equilibrium, two equilibria

Theorem 2 ([3, 2]) It is PPAD-complete to find a Nash equilibrium
1. for n-player games with n > 3 [3].
2. for 2-player games [2].

These hardness results very much rely on the games not being zero-sum. For zero-sum games, we will
see how to compute (mixed) equilibria in Section 5, along the way establishing the existence of equilibria
constructively.

3.2 Other game outcomes

There are several other natural notions of what an outcome in a game could be, which we discuss here briefly.

If there is a natural order to the play — for instance, Rohit always has to choose before Colette —
then Rohit will optimize his strategy against the known fact that Colette will choose whatever is best for
her. This type of outcome is often called Stackelberg equilibrium. Usually, when one uses this name, one
emphasizes that the first player derives an advantage from going first. Notice that this is not the case for
Rock-Paper-Scissors, but it is true for Beach or Mountains. If Rohit goes first in that game, he can commit
to going to the beach, leaving Colette a choice between going to the mountains (and getting utility -3) or
going to the beach (and getting utility 1). Thus, Rohit gets a better outcome by going first. For zero-sum
games, the first player’s strategy is often referred to as a Mini-Max (or Maxi-Min) strategy, because he is
choosing a row that maximizes the payoff he will get, which in the case of a zero-sum game will be the
minimum of the entries in that row.

Another important notion is that of dominant strategies. A dominant strategy is a very stable outcome:
it is a strategy that is best for a player, never mind what the other player does. The existence of a dominant
strategy means that a player does not need to figure out what the other player is or might be doing, but can
simply pick the “clearly best” strategy and play it. Naturally, dominant strategies are even rarer than pure
equilibria, and in fact, neither of the games we defined earlier have dominant strategies for either player.

Another important equilibrium notion is motivated by the Traffic Intersection game given in Table 3.
Imagine two cars at an intersection. If a driver stops, they will lose a unit of wasted time. If a driver goes
through the intersection, they get one unit. But if both drivers drive at the same time, they get into an
accident, which is very bad for both.

Stop Go
Stop | -1,-1 -1,1
Go 1,-1 | -10,-10

Table 3: The payoff matrices Ar, Ac for “Traffic Intersection”

There are two natural pure equilibria: Rohit stops and Colette drives, or Rohit drives and Colette stops.
There is a third (mixed) equilibrium, where each of them independently drives with a tiny probability p,
and stops with the remaining probability 1 — p ~ 1. Then, with probability p?, an accident occurs.

The role of a traffic light is to enable equilibria in which no accidents ever occur, yet we are not stuck
in an equilibrium where only Rohit ever gets to drive. A traffic light can be modeled as randomness shared
between both players: it allows us to have a light that is either (Red, Green) or (Green, Red), with equal
probability. Rohit and Colette can now base their decision on the light as well: one equilibrium would be
that whoever has the green light will drive, and whoever has the red light will not drive (or vice versa). This
is an equilibrium: if Rohit knows that Colette will always drive when she sees a green light, he will prefer to
not drive when he sees a red light. Such coordinated equilibria are called correlated equilibria.

Another important observation is that in the standard notion of equilibrium, we consider an outcome
stable if no player can unilaterally improve their utility by changing strategies. This does not say that there
isn’t a group of multiple players who can together change their strategy and do better. Naturally, one can
define notions of equilibria with respect to changes by multiple players.

There are additional equilibrium notions, including coarse correlated equilibria, outcomes of learning
algorithms in games, and others.

3.3 (In)efficiency of equilibria

As we mentioned previously, the choices made by selfish players at equilibrium may not be optimal in their
effect on overall utility. For example, one equilibrium of the Traffic Lights game involves randomization, and
thus the possibility of accidents. Another example would be if we change the “Beach or Mountains” game
slightly, so that both Rohit and Colette prefer the Beach. Now, there is still an equilibrium in which they go
to the mountains, because given that the other is going to the mountains, neither would prefer unilaterally
going to the beach.

In a sense, we can think of equilibrium solutions as similar to the outcome of a local search algorithm,
when no simple improvements are possible any more. Then, by analogy to approximation algorithms, we
can ask how much worse the equilibrium outcome is as compared to the optimum solution, which gets to
just tell everyone what to do.?

There are two natural notions that have been studied extensively in the literature, called Price of Anarchy
[5] and Price of Stability [1]. Both study the ratio of the cost/utility of the optimal outcome with that of an
equilibrium outcome. The price of anarchy uses the worst equilibrium; the motivation for this definition is
systems in which one has no control over what players will do, except for knowing that they will reach some
equilibrium. The price of stability instead considers the best equilibrium; the motivation here is systems in
which one can make a “suggestion” to players, but the suggestion is such that selfish players will in fact
follow it. Then, it is possible to get them into the best equilibrium.

4 Basic Properties and Equilibria of (Zero-Sum) Games

After this very condensed overview, let us now be a little more formal, and derive some useful properties.
We begin with a zero-sum game, in which Rohit’s payoff is given by the matrix A € R™*™ (while Colette’s
payoff is given by —A). For Rock-Paper-Scissors, we saw that playing first is a disadvantage. We first show
that this is true for all zero-sum games. Notice that when Rohit plays first, his payoff is max; min; a, ;,
because for any row ¢ that he chooses, Colette will choose the column j giving him the lowest (and thus her
the highest) payoff. When Colette plays first, Rohit’s payoff is min; max; a; ;.

Proposition 3 For all matrices A = (ai,j)i,j, we have max; min; a; ; < min; max; a; ;.

Proof. Let j* be the strategy that minimizes max; a; j, i.e., Colette’s best strategy when she plays first.
Then, max; min; a; ; < max; a; ;+: Rohit can only do better if Colette always plays j* instead of reacting
optimally to his choice. So max; min; a; ; < max; a; j~ = min; max; a; ;. [|

Next, let’s look a little more closely at the need for randomization. We saw earlier that in general, even
zero-sum games do not have pure equilibria, but they do have mixed equilibria. Suppose that there is an
order to the game: Rohit moves first and commits to a randomized strategy. Does Colette still need to
randomize to respond optimally? For Rock-Paper-Scissors, that’s not true: once Rohit commits to playing
each strategy with probability %, all actions are equally good for Colette, so she can just play a pure strategy.
(The reason she needs to randomize at equilibrium is so that Rohit cannot improve his strategy by doing
something different — but if Rohit has to commit first, this is not a concern.) The next lemma shows that
this is a general property of bimatrix games (not just zero-sum games). Here and in the following, we will
identify mixed strategies with probability vectors whose entries are non-negative and add up to 1.

Proposition 4 (Loomis’s Theorem) Let r,c be equilibrium randomized strategies for Rohit and Colette
in the bimatriz game (Ag, Ac).

2For instance, it may sacrifice the utility of some players for the common good, or keep each player from being too selfish
and ruining the outcome for everyone else.

1. Ifr; > 0 and vy > 0 (i.e., Rohit plays both i and i’ with non-zero probability), then Rohit’s utility from
playing i and i’ is the same, i.e., (Arc); = (Age)i. (Similarly for Colette.)

2. The second player to play has an optimal response that is a pure strategy.

Proof. To prove the first part, notice that if one of (Agc);, (Arc)y were larger, then Rohit could unilat-
erally improve his utility by putting more probability weight on that one, and less on the other.

For the second part, because all strategies that Rohit randomizes between at equilibrium give him the
same payoff, he can obtain the same payoff by just playing any one of them. [|

5 Computing Equilibria

We can leverage Proposition 4 to phrase the problem of computing an optimal first-mover strategy for Rohit
as a linear program. There is a variable r; for each pure strategy i, namely, the probability that Rohit plays
i. In addition, in order to express the objective, we have one more variable u, which is Rohit’s expected
utility. Beyond the constraints ensuring that the r; are a probability distribution, we need to express that
Colette will choose the response that makes Rohit as badly off as possible (because the game is zero-sum). By
Proposition 4, we only need to consider each of Colette’s pure strategies. Rohit will thus get the minimum of
his utilities, over all strategies j that Colette could play. We express this by saying that u is upper-bounded
by the utility for each of Colette’s responses j. Hence, our LP is the following:

Maximize u
subject to u <Y . a;,r; forall j

duri=1

r; >0 for all 4.
Taking the dual of this LP, we see that that it is:

Minimize v
subject to v > Zj a; ;jc; foralld
Zj Cj =1

c; >0 for all j.

That is, the dual of Rohit’s first-mover optimization problem is Colette’s first-mover optimization prob-
lem, of choosing a mixed strategy to minimize Rohit’s payoff against his best response. These LPs imply
a few things: first, we can efficiently compute optimal first-mover strategies for both players. Second, the
LP solutions r and ¢ actually form an equilibrium. This follows from complementary slackness of linear
programming, which says that whenever a variable (r; or ¢;) is strictly positive, then the corresponding con-
straint in the other LP must be tight. Thus, whenever Colette includes a strategy j in her randomization,
it must be a best response to Rohit’s mixed strategy, and vice versa. Finally, the strong duality theorem
implies the following:

Theorem 5 (Von Neumann’s Minimax Theorem) max, min. 77T A¢c = min. max, rTAc.

Thus, when both players play randomized strategies, the value of the game is the same regardless of
which player commits first. Of course, combining Theorem 5 with Proposition 4, it also follows that
max, min;(rTA); = min. max;(Ac);. And by weak duality alone, we get that for every mixed strategies
r,C

mjin(rTA)j < mZaX(Ac)i. (1)

6 Yao’s Minimax Theorem

For the purpose of algorithm analysis, Theorem 5 and the weaker version (Inequality (1)) allow us to prove
a non-trivial result that helps prove lower bounds on the performance of randomized algorithms. We can
think about the choice of algorithms and inputs as a game between two players, one choosing a deterministic
algorithm (we’ll call him Alan from now on) and one choosing an input for the algorithm (we’ll call her
Indira). There is some measure of cost of the algorithm: most often, this will be the algorithm’s running
time, but it may also be memory usage, or an approximation guarantee, or some other measure of how well
or poorly the algorithm is performing. When a deterministic algorithm A runs on an input I, it incurs some
cost C(A,T).

If Alan has to pick his deterministic algorithm first, then he is effectively the first mover in a zero-sum
game. After he chooses A, Indira will choose an input I that makes the cost as large as possible. Conversely,
if Indira had to commit to an input I first, Alan’s job would be really easy: he would just compute the
answer to I, and use an algorithm that has the correct answer hardwired, outputting it in constant time.

In algorithm analysis, we think of the algorithm A being specified first, and the input being a worst-
case input for A. Since Alan needs to commit first, he can vastly improve his performance by choosing
a randomized algorithm. A randomized algorithm can be considered as a distribution over deterministic
algorithms.

To make this more precise, we fix an input size n. As a result, there will be only finitely many inputs
of size n.> We also restrict attention to algorithms that always (not just in expectation, or with high
probability) run in some bounded time f(n) (exponential or worse is fine). Then, there are only finitely
many possible algorithms (if we identify an algorithm with the way in which it accesses and processes
memory). Furthermore, in f(n) steps, an algorithm can at most flip f(n) coins, i.e., the number of coin flips
by the algorithm is also bounded.

Therefore, we can consider a randomized algorithm as a distribution over deterministic algorithms. If the
randomized algorithm flips some maximum number f(n) of coins, then we can perform all those coin flips
before the algorithm even starts running and write them down somewhere; the algorithm will consult them
whenever a coin flip is called for. But now, the algorithm itself is deterministic, and the coins simply choose
which deterministic algorithm is being run. Thus, a randomized strategy for Alan is exactly a randomized
algorithm.

Applied specifically to this game, Theorem 5 states that the cost of the best randomized algorithm on
its worst-case input is equal to the cost for the following scenario: first, Indira chooses a worst possible
input distribution, then Alan picks the best deterministic algorithm, knowing Indira’s input distribution.
This input allows us to prove lower bounds on the cost of the best randomized algorithm, without having
to explicitly figure out what they are or constructing bad inputs for them. In fact, in order to just prove
a lower bound, Indira does not even need to use a worst possible input distribution; any input distribution
will give a lower bound, although if the distribution is really easy to handle, the lower bound will not be
very strong. From Inequality (1), we thus obtain the following theorem:

Theorem 6 (Yao’s MiniMax Theorem) Fiz a problem I and an input size n. Let T be the (finite) set
of all inputs of size n, and A the (finite) set of all algorithms II on inputs of size n under consideration.
Let q be any distribution over L, and Aq the optimal deterministic algorithm for the input distribution q.
Let p be any distribution over deterministic algorithms, i.e., any randomized algorithm, and let I, be the
worst-case input for the randomized algorithm p. Then,

Erq [C(Aq. D] < Eanyp [C(A, I)].

In words, Ejq [C(Aq,I)] is a lower bound on the worst-case expected cost of any randomized algorithm for
1I.

3We actually count the number of bits in the input. For instance, this rules out a model in which inputs may contain real
numbers of arbitrary precision.

Theorem 6 reduces the often difficult task of designing bad inputs for randomized algorithms to the often
more manageable task of designing bad distributions over inputs for deterministic algorithms. Of course,
the bounds one derives are only as strong as the input distribution allows: if the distribution is simple (e.g.,
Indira plays a pure strategy, or randomizes only over very few inputs), then Alan’s task is very easy, and the
deterministic algorithm will perform very well. This does not show that a randomized algorithm can solve
II well — it only implies that the distribution may have been too easy.

7 An Application: Game Tree Evaluation

As an application of Yao’s MiniMax Theorem, we will consider an algorithmic problem that also lets us
discuss another type of game model. In many types of games (in particular: games of strategy such as chess,
Tic Tac Toe, etc.), two players alternate taking turns. Various states correspond to the end of the game, and
at that point, we know the “value” or outcome of the game. Games that are specified in this way are called
extensive form games, and they extend beyond “game” examples to many situations in which competitors
take turns making decisions. Here, we will only consider games with full information, i.e., where both players
have full information about all relevant parameters and each other — this rules out games such as poker, in
which players have access to information (their own cards) not available to the other player.

When the game is zero-sum, as before, one player (Max) wants to maximize the outcome, while the other
(Mina) wants to minimize it. Whenever it is Max’s turn, he will choose an action that will maximize his
outcome from all options, knowing full well that Mina will choose an action minimizing it among available
options (and she knows that Max will choose an action maximizing his outcome, etc.) Thus, we can think of
the game as a tree, in which the nodes at alternating levels are labeled “Max” and “Min”. Leaves of the tree
have specified values, and the values of internal nodes can be defined inductively: the value of a Max node
is the maximum of the values of its children, while the value of a Min node is the minimum of the values of
its children. An important algorithmic question is then to calculate the value of the root of the tree, which
corresponds to finding out who will win the game (and with what score) if both players play perfectly.

An important special case is obtained when all leaves have values of 0 or 1. Then, a Max node computes
an OR of the values of its subtrees, while a Min node computes an AND. Such trees model decision rules:
you might choose to buy stock in a particular company if the general economic outlook is good, and (the
company has a quarterly announcement coming up or the sun is shining today). Then, in order to evaluate
whether to buy stock, you need to calculate the value of the AND/OR tree, i.e., find out whether it is 0 or
1.

Of course, this is an easy algorithmic task: you can either solve it recursively using DFS or bottom-up
with dynamic programming. Either way, the time it takes will be ©(n), the number of nodes in the tree.
That is also the number of leaves that need to be evaluated. Often, we think of the evaluation of leaves as
costly: at least, it takes effort to do so, and possibly, it costs actual money to get access to relevant economic
data. Hence, we would like an algorithm that queries fewer than n leaves.

When the algorithm has to be deterministic, it is not difficult to see that one cannot evaluate the tree
with fewer than n leaf queries in the worst case. While the process of querying leaves is adaptive, for a
deterministic algorithm, an adversary can predict which will be the next leaf queries, and thus design the
whole input ahead of time to achieve exactly the same behavior. One can prove pretty easily by induction
on the height of the tree:

Proposition 7 For any AND/OR tree T of height h and any deterministic evaluation algorithm A, there
are value assignments to the leaves of T that make T evaluate to true/false, and for which A must query all
leaves before knowing the value.

Hence, we turn to randomization to do better.

7.1 Snir’s Algorithm

We will derive and analyze a randomized algorithm for evaluation of binary AND/OR trees. To motivate
the randomized algorithm, consider an AND node. If both of its subtrees evaluate to 1, then the only way
to obtain the value of the node is to evaluate both subtrees. But if both evaluate to 0, then an algorithm
definitely will only need to evaluate one subtree to get the value. And if exactly one subtree evaluates to
0, then the algorithm can save itself the second subtree if it evaluates that one first. The problem is that
for a deterministic algorithm, an adversary can always ensure that the subtree the algorithm evaluates first
evaluates to 1. That’s exactly where randomization helps.

Similarly, for an OR node, if both subtrees evaluate to 1, the algorithm will only need to evaluate one of
them, and if exactly one evaluates to 1, the algorithm has a chance to only evaluate one subtree. Because
AND and OR nodes alternate, an input that’s bad for an AND node (both subtrees evaluate to 1) means
that at the next level, the input cannot be of the worst type (both subtrees evaluate to 0) for the OR nodes.
This suggestions the following algorithm, known as Snir’s Algorithm (or Random DFS):

Algorithm 1 Snir’s Algorithm for AND/OR tree evaluation

1: if the current node v is a leaf then

2: Query it and return the value.

3: else

4 Pick one of the two children vy, vo of v uniformly at random.
5 Recursively evaluate the picked child v;.

6: if it determines the value of v then
7

8

9

Return that value.
else
Recursively evaluate the other child vs_;.
10: Return the value of v.

To analyze the running time, let TX{\}D /OR(h) be the time to evaluate a tree of height h whose root is an

AND/OR node, when it evaluates to 0/1. For an AND node to evaluate to 1, or an OR node to evaluate to
0, we always need to evaluate both subtrees, so all we can guarantee is that

E [Tanp(h)] < 2B [Tor(h - 1],
E [Tor(h)] < 2B [TRxp(h —1)]

Now consider an AND node that evaluates to 0. If both of its subtrees evaluate to 0, then the expected
cost will be the expected cost to evaluate one OR subtree to 0. If one of its subtrees evaluates to 0 and the
other to 1, then to determine the value, the algorithm will need to evaluate one subtree to 0; with probability
%, it first evaluates the wrong subtree, which evaluates to 1. The case for an OR node that evaluates to 1 is
analogous. Therefore,

<2
<2

E [Txp(h)] <E[TSx(h —1)] + %E [Tae(h —1)],
E [Tau(h)] < B [Thap(h — 1)] + 5E [Tan(h — 1)].

Let tanp(h) = max(E [Ty (R)],E [TAxp(R)]), and tor(h) = max(E [T3g(h)] ,E [T&x(h)]). Then, by
combining two consecutive levels, we obtain that

E [TAxp(h)] < 2E [TAND 2)] + E [TRxp(h —2)] < 3tanp(h—2),
E [Tgr(h)] < 2E [T3] +E [TOR(h —2)] < 3tor(h—2),

E [TRxp(h)] < 2E [TAND -2)] + E [TAxp(h—2)] + %E [TRxp(h—2)] < %tAND(h —-2),
B (T3] < 28 [Tha(h 2] + LB [T8a(n 2] + 1B [T~ 2] < Loncr—2)

Thus, by taking the maximum of the two cases, we see that

tanp(h) < 3tanp(h —2),
tor(h) < 3tor(h — 2).

Unrolling the recurrence, we get that the expected number of leaves queried to evaluate a tree of h levels
is 3"/2. Because a complete blnary tree with n leaves has h = logy n levels, the number of leaves queried
by Snir’s algorithm is 3zlogan — pzloge3 < 0793 T particular, the speedup is from linear to significantly
sublinear.

7.2 A Lower Bound on Randomized Algorithms

Next, we want to investigate whether n 73 leaf queries is the best that any randomized algorithm can do.
So we’d like to prove a lower bound on the number of leaf queries of any randomized algorithm. To do so,
we will employ Yao’s Theorem (Theorem 6). That is, we need to define a distribution over inputs (true/false
assignments) such that the best deterministic algorithm, knowing the distribution, will still need to query a
lot of leaves.

Perhaps the most natural distribution to try is to have each leaf be true independently with probability
%. There’s a slight problem with this distribution, though. Let’s say that the bottom layer consists of OR
nodes. Each of them is now true with probability %. So each node in the next layer of AND nodes is true
with probability %. It would be cumbersome for the analysis to deal with the fact that at each layer, the
probabilities of being true are different — we’d like the output of the AND nodes to be true with the same
probability as the leaves. This will necessitate a slightly different probability of being true for each leaf.

In fact, to simplify our analysis a little further, we can perform a transformation on the tree. A simple
truth table calculation shows that if the tree has even height and the root node is an AND, then the root’s
value is the same as in a tree in which all nodes have been replaced with NOR gates. So we will switch our
analysis to a tree in which all gates are NOR.

Now, we can look at just one level rather than two to reverse engineer the right value p for leaves to be
true. The probability that the NOR gate is true when each input is true independently with probability p
s (1 —p)?, because a NOR gate is true exactly when both inputs are false. We would like this to be equal
to p, so our desired p solves (1 — p)? = p, or p*> — 3p + 1 = 0. The solution to this quadratic equation is
p= 3_2‘/5, which is our choice of probability.

Against this distribution, the optimum deterministic algorithm is to query the leaves left-to-right, skipping
any leaf whose value is not needed any more. This intuitively makes sense: if one has already begun evaluating
a subtree, it is always better to continue evaluating it until its value is known, rather than switching to a
different subtree. Having evaluated some leaf can never bring “bad news” that would make it seem much
more expensive to fully evaluate the tree (and thus preferable to switch). While this is intuitive, a formal
proof requires some care, and induction over the height of the tree. We’'ll skip it here, and instead focus on
how many leaves this deterministic algorithm needs to query.

We can analyze this number using a similar recurrence as for Snir’s algorithm. When querying a NOR
node at level h, we first evaluate one subtree fully. If it evaluates to 1, which happens with probability

10

p= 3’2‘/5, then the value of the NOR node is known. Otherwise, the other subtree must be evaluated as
well. Thus, if s(h) is the expected time to evaluate a tree of height h, then it satisfies the recurrence

s(h)y=s(h—1)+(1—-p)s(h—1) = ! +2\/gs(h -1).

h
So s(h) = (#) , and substituting that h = logyn, we get that the number of leaves which the

logy n
1+T\/5 = plog2(1+V5)—1 > 0694 Using Yao’s Theorem, we have

0.694

deterministic algorithm evaluates is (

thus shown that every randomized algorithm must in the worst case evaluate at least n leaves.

The attentive reader will have noticed that 0.694 # 0.793; that is, there is a gap between the lower and
upper bounds we proved. So either Snir’s algorithm is not optimal, or our distribution is not the worst-case
input distribution.

It turns out that the latter is the case. Among distributions with independent choices for leaves, our value
of p is indeed the worst-case choice. But the choice to make the leaves independent is suboptimal. When
the leaves (or larger subtrees) are true independently, there is a non-trivial chance that both are true. Then,
an algorithm cannot go wrong: whichever subtree it evaluates first, it will know the value of the NOR gate
without ever having to query the other subtree. To produce a distribution matching the upper bound from
Snir’s algorithm, we need to anti-correlate the values of leaves and subtrees. Starting from the root, we make
a random choice whether it will be true or false. Then, for any NOR node (including the root), if we have
decided that it will be true, then both subtrees must be false. But if we have decided that it will be false,
we will make exactly one subtree true and one false, and choose randomly which one is which. Analyzing
the optimal deterministic algorithm against this distribution is much harder, because now, learning about
some leaf reveals information about other leaves as well. But with enough work, one can show that the best
deterministic algorithm must query nz 10823 Jeaves.

8 Further Reading

Game Theory is a classic subject in economics, and there are several good introductory books on the topic
from an economist’s perspective, e.g., [10, 13]. For an even broader (and very comprehensive) introduction
to micro-economic theory, see the textbook [7].

For a collection of surveys on different areas of algorithmic game theory, written from a CS perspective,
see [12]. For a CS-oriented introduction to algorithmic game theory, mechanism design, and related topics,
see [15, 4].

A more in-depth discussion of Yao’s MiniMax Theorem and its applications is part of any standard
textbook on randomized algorithms, such as [9, 8].

References

[1] Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Thomas Wexler, and Tim Rough-
garden. The price of stability for network design with fair cost allocation. In Proc. 45th IEEE Symp.
on Foundations of Computer Science, pages 295-304, 2004.

[2] Xi Chen and Xiaotie Deng. Settling the complexity of two-player nash-equilibrium. In Proc. 47th IEEE
Symp. on Foundations of Computer Science, pages 261-270, 2006.

[3] Constantinos Daskalakis, Paul Goldberg, and Christos H. Papadimitriou. The complexity of computing
a nash equilibrium. In Proc. 38th ACM Symp. on Theory of Computing, pages 71-78, 2006.

[4] Jason D. Hartline. Mechanism Design and Approzimation. available at
http://jasonhartline.com/MDnA /, 2011-2017.

11

Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. In Proc. 16th Annual Symp.
on Theoretical Aspects of Computer Science, pages 404-413. Springer, 1999.

Andreu Mas-Colell. On a theorem of Schmeidler. J. of Mathematical Economics, 13:201-206, 1984.

Andreu Mas-Collel, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory. Oxford Univer-
sity Press, 1995.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Proba-
bilistic Analysis. Cambridge University Press, 2005.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1990.
Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1997.
John F. Nash. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA, 36:48-49, 1950.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani, editors. Algorithmic Game Theory.
Cambridge University Press, 2007.

Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994.

Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of
existence. Journal of Computer and System Sciences, 48(3):498-532, 1994.

Tim Roughgarden. Twenty Lectures on Algorithmic Game Theory. Cambridge University Press, 2016.

12

