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The Edmonds/Karp algorithm is a specific implementation of the generic Ford/Fulkerson algorithm for
computing a Maximum Flow in a network. Recall that the Ford/Fulkerson algorithm looks as follows:

Algorithm 1 Ford Fulkerson
1: Start with flow fe = 0 for all edges e.
2: while the residual graph Gf contains an s-t path P do
3: Augment the flow f along some such path P .
4: end while

As we saw in class, and the textbook explains, this algorithm is always correct, and will always terminate
(with an integral Max-Flow) within O(C) iterations when all edge costs are integers; here, C ≤

∑
e ce.

However, a poor choice of the path P for augmentation may result in actually taking Ω(C) iterations —
furthermore, when the edge costs are irrational, the algorithm may not terminate at all. Hence, we want to
make “good” choices of the path P for augmentation.

A first natural choice is to augment along a path P with largest bottleneck capacity, called a widest path.
We did not analyze this heuristic in class, nor will we here in detail, but the following can be proved about
it.

Theorem 1 If the widest path is chosen in each iteration, then the Ford/Fulkerson algorithm terminates in
O(m log C) iterations.

Notice that this is actually polynomial in the size of the input, as opposed to the previous bound, which
was pseudo-polynomial.

Proof Sketch. The idea is that each flow can be “decomposed” into at most m paths: that is, we can
identify at most m paths Pi from s to t, carrying flow, such that these paths together account for all of the
flow f . By the Pigeon Hole Principle, one of them carries at least a 1/m fraction of the total flow, so the
widest path does as well. Thus, if F ∗ is the value of a maximum flow, then in each iteration, we increase
the amount of flow we found by a 1/m fraction of F ∗ − ν(f). Some relatively simple arithmetic now shows
that after O(log F ∗ log m) iterations, we have found a flow of value F ∗, i.e., a maximum flow.

The other important question is of course whether we can actually find the widest path. As observed
in class, a relatively simple dynamic program lets us do that. Perhaps even simpler is a divide-and-conquer
approach. We try to find the “bottleneck edge” in the residual graph Gf via binary search. Having sorted the
edges by their residual capacity c′e, we start with the median edge e, and ignore all edges of smaller capacity.
If there is an s-t path using only the remaining edges, we know that the bottleneck edge of the widest path
has capacity at least c′e, and can continue recursively with the edges of capacity at least c′e. Otherwise (if no
s-t path is left using only high-capacity edges), we know that the bottleneck edge has smaller capacity, and
recursively search among the edges of smaller residual capacity. This way, in O(log m) iterations, we find
the bottleneck edge, and each iteration takes time O(m), to look for an s-t path with BFS. Hence, we can
find the widest path in time O(m log m).

In fact, we can do even better than this: we can adapt Dijkstra’s algorithm to find the widest s-t path
with respect to c′e (notice that the dynamic programming approach mentioned above would correspond to an
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adaptation of the Bellman/Ford algorithm). For each node v, in our modification, we let rv denote the width
of the widest path from s to v discovered so far. When we consider nodes u for inclusion in the growing set
S of nodes, we pick the endpoint of the edge e = (v, u) ∈ S × S maximizing the quantity min(r(v), ce), and
include e and the endpoint u. The same inductive proof as for Dijkstra shows that this finds the widest s-t
path, and using Fibonacci Heaps (:-), we can make it run in time O(m + n log n).

1 The Edmonds/Karp Algorithm

While having an actual polynomial-time algorithm is already progress, we would even prefer to have an
algorithm whose running time does not depend on C at all. After all, our MST or shortest paths algorithms
use edge costs ce, but their running time depends only on the parameters m and n.1 Such an algorithm is
called strongly polynomial.

This is accomplished by the Edmonds/Karp algorithm, which gives yet another choice for the s-t path
in the Ford/Fulkerson algorithm. If we look at the bad examples for Ford/Fulkerson, we see that the bad
behavior can be attributed to two causes:

• We use paths with little capacity (addressed above).

• Our paths put flow on more edges than necessary.

The idea of the Edmonds/Karp algorithm is to attack the second weakness instead of the first, by always
using a shortest s-t path in each iteration. Here, the length is counted as the number of edges of the path in
the residual graph.

Notice that this length of the shortest path is always between 1 and n− 1. Furthermore, our intuition is
that the shortest paths shouldn’t really get shorter: our algorithm keeps adding flow, and saturates edges e
(by making them reach fe = ce, or fe = 0 for reverse edges) on the shortest paths early on. After that, we
would expect that the shortest remaining paths keep getting longer, so after “not too many” iterations, the
length should have reached n, at which point there is no s-t path remaining.

This intuition turns out to be correct, and forms the core of the proof of the following theorem:

Theorem 2 The Edmonds/Karp algorithm terminates after O(mn) iterations.

Finding a shortest s-t path in the residual graph Gf is not very difficult. In fact, we do not even need to
use Dijkstra’s algorithm (or Bellman/Ford), as all edge lengths are only counted as 1. We can instead simply
run BFS, starting at s, which takes time O(m). Hence, the running time of the Edmonds/Karp algorithm
is O(m2n). Notice that, while this doesn’t look too bad at first sight, if the graph is dense (i.e., it has Ω(n2)
edges), the running time is only bounded by O(n5), which is quite a lot.

Proof of Theorem 2. We write Pr for the shortest path used in iteration r of the Edmonds-Karp algo-
rithm, and |Pr| for the number of edges in it. Then, we know that the distance from s to t in iteration r
was exactly |Pr|. Our proof will establish the following two key claims:

1. The distance from s to t never decreases.

2. Between two successive saturations of the same edge e (i.e., two times r < r′ at which fe is increased
to ce, or decreased to 0), the distance from s to t strictly increases.

Let us first see that these two claims imply the Theorem. In each iteration, the Ford/Fulkerson algorithm
saturates the bottleneck edge ê on the path Pr. In particular, each iteration saturates some edge. After
at most m + 1 iterations, the same edge must be saturated again, so every m + 1 iterations, the distance
increases by at least 1. But it can only increase to at most n, so it increases at most n times. Hence, there
can be at most O(mn) iterations.

1Technically, of course, when they add b-bit numbers, they spend time O(b), so all the arithmetic operations and comparisons
actually do take time Θ(log C). However, it is common to treat such arithmetic operations as taking only constant time, in
which case we do want the algorithm to not depend on b.
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So we want to prove the two claims, which correspond to our intuition as to why the Edmonds/Karp
algorithm might work well. Let’s think for a moment about the first claim. Assume for contradiction that
the distance actually decreases from step r to r + 1. Say the shortest path at time r is P , and the one at
time r + 1 is Q. Because Q is by assumption shorter than P , and P was the shortest path in the residual
graph at time r, there must be at least one edge e in Q that is not in the residual graph at time r. The only
reason e could appear at time r + 1 is if P pushed flow on it, which Q can now push back the other way.

Suppose that e were actually the only such edge. (This is certainly not true, but we will take care of the
more general case in a moment.) Then Q is of the form Q0, followed by ←e , followed by Q1, where neither Q0

noer Q1 use edges from P in the opposite direction. On the other hand, P is of the form P0, followed by e,
followed by P1. Because neither Q0 nor Q1 use edges in the opposite direction from P , they are also paths
in the residual graph at time r, and therefore, both the path consisting of P0 followed by Q1, and the path
consisting of Q0 followed by P1 are paths at time r. So they must both be at least as long as P , because P
was shortest. This implies that |Q0| ≥ |P0|+ 1, and |Q1| ≥ |P1|+ 1, so Q is strictly longer than P .

We still have to take care of the case when there are multiple edges e used the opposite way. The
generalization is proved in Lemma 3 below. Once we have proved that lemma, we want to verify that it
implies both key claims above.

1. For the first part, we look at an arbitrary point in time r, and prove that the s-t distance from time
r to r + 1 does not increase. There are two cases: if the path chosen at time r + 1 pushes flow the
opposite direction from the one at r on any edge, then we can apply Lemma 3 to those two paths, and
find that the s-t distance actually increased.

Otherwise, the shortest s-t path Pr+1 at time r + 1 must actually be in the residual graph at time r,
so it can be no shorter than the shortest path at time r. In both cases, the distance from s to t thus
cannot decrease.

2. For the second part, we look at two successive saturations of the same edge e, happening at times r1

and r2. Then, there must be some time r̂ ∈ (r1, r2) such that flow was pushed in the opposite direction
at times r1 and r̂. Ideally, we would like to apply Lemma 3 to the times r1 and r̂, but we haven’t made
sure yet that the times also satisfy the second condition of the lemma.

Instead, we let r < r′ ∈ (r1, r̂) be such that (a) the paths at time r, r′ push flow in opposite directions
along at least one edge, and (b) |r′ − r| is minimized subject to constraint (a). We know that such
r and r′ exist, as r1 and r̂ are candidates; the only reason why we wouldn’t chose them is because
others are closer together. Now we want to claim that the times r, r′ we constructed in this way, and
the paths Pr, Pr′ along which flow is pushed at those times, satisfy the conditions of Lemma 3. The
first condition simply follows by our requirement (a). The second one follows from the minimality of
|r′− r|, for if there were a time r′′ ∈ (r, r′) at which flow is pushed on an edge opposite to r or r′, then
r′′ and r (or r′′ and r′) would form a pair closer in time.

So we can apply Lemma 3, and find that the s-t distance at time r′ is strictly greater than at time r.
By part 1, it cannot decrease either from r1 to r, or from r′ to r2, so it is strictly greater at time r2

than at time r1.

This completes the proof of the Theorem.

Lemma 3 Let r < r′ be two iterations, and P,Q the shortest paths in those iterations, with the following
properties:

1. There is at least one edge e such that P and Q push flow on e in opposite directions.

2. For all times r′′ ∈ (r, r′), the path Pr′′ chosen by the algorithm in iteration r′′ does not push flow in
the opposite direction from either P or Q, for any edge e ∈ Pr′′ .

Then, |P | < |Q|.
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Proof. We let the nodes of P be denoted by 1, 2, . . . , k, and the edges by (1, 2), (2, 3), . . . , (k− 1, k). Also,
we let e1 = (v1 + 1, v1), e2 = (v2 + 1, v2), . . . , e` = (v` + 1, v`) be all the edges on which Q pushes flow
in opposite direction from P . By the first assumption in the lemma, we know that ` ≥ 1. To get from
v0 := s = 1 to v1 + 1, the path Q uses a subpath Q0. Then, to get from vj to vj+1 + 1, the path Q uses
a subpath Qj , and finally, to get from v` to k, it uses a subpath Q`. Because we assumed the ej to be all
edges that are used by Q in the opposite direction, and because no paths at time t′′ ∈ (r, r′) used any edge
from Q or P in the opposite direction, we know that each Qj is also a path in the residual graph at time r.

Now, P is a shortest s-t path at time r, and so going from node a to b through a + 1, a + 2, . . . , b− 1 (as
P does) must also be a shortest path from a to b. Otherwise, we could insert a shorter path, and obtain a
shorter s-t path. In particular, we know that each Qj , which is a path from vj to vj+1 + 1 must contain at
least vj+1 + 1 − vj edges, i.e., |Qj | ≥ vj+1 + 1 − vj . (If vj+1 < vj , then this is of course trivial.) Now, we
know that the length of Q is |Q| = `+

∑`
j=0 |Qj |. Substituting the inequality we argued a moment ago, this

gives us that

|Q| ≥ ` +
∑`−1

j=0(vj+1 + 1− vj) + (k − v`) = 2` +
∑`−1

j=0(vj+1 − vj) + (k − v`) = 2` + k − 1.

In the last step, we used that the series telescopes — all terms except v` and −v0 cancel out with the next
terms. Now, because ` ≥ 1, we get that |Q| ≥ k + 1 > |P |, which proves the lemma.
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