
STABILITY OF LOAD BALANCING ALGORITHMS IN DYNAMIC

ADVERSARIAL SYSTEMS∗

ELLIOT ANSHELEVICH† , DAVID KEMPE‡ , AND JON KLEINBERG §

Abstract. In the dynamic load balancing problem, we seek to keep the job load roughly
evenly distributed among the processors of a given network. The arrival and departure of jobs
is modeled by an adversary restricted in its power. Muthukrishnan and Rajaraman (1998) gave a
clean characterization of a restriction on the adversary that can be considered the natural analogue of
a cut condition. They proved that a simple local balancing algorithm proposed by Aiello et. al. (1993)
is stable against such an adversary if the insertion rate is restricted to a (1 − ε) fraction of the cut
size. They left as an open question whether the algorithm is stable at rate 1.

In this paper, we resolve this question positively, by proving stability of the local algorithm at
rate 1. Our proof techniques are very different from the ones used by Muthukrishnan and Rajaraman,
and yield a simpler proof and tighter bounds on the difference in loads.

In addition, we introduce a multi-commodity version of this load balancing model, and show
how to extend the result to the case of balancing two different kinds of loads at once (obtaining
as a corollary a new proof of the 2-commodity Max-Flow Min-Cut Theorem). We also show how
to apply the proof techniques to the problem of routing packets in adversarial systems. Awerbuch
et. al. (2001) showed that the same load balancing algorithm is stable against an adversary inserting
packets at rate 1 with a single destination, in dynamically changing networks. Our techniques give
a much simpler proof for a different model of adversarially changing networks.

Key words. Adversarial load balancing, packet routing, multi-commodity flow

AMS subject classifications. 68W15,68W40

1. Introduction.

Load Balancing. In a distributed network of computing hosts, the performance
of the system can depend crucially on dividing up work effectively across the partici-
pating nodes. This type of load balancing problem has been studied in many different
models, centered around the idea that an algorithm should avoid creating “hot spots”
that degrade system performance [24].

We consider a basic model of load balancing in a distributed network, which has
formed the basis of a number of earlier studies [1, 16, 5, 21, 22]. A network of identical
processors is represented by an undirected graph G = (V, E). There are a number of
jobs to be processed in the system, abstractly represented by unit-size tokens. Time
progresses in discrete steps called rounds; in a given round, each token is held by one
of the nodes, which is viewed as processing the associated job, and the load on a node
is defined to be the number of tokens it holds. The goal is to balance the loads, so that
no single node has too many tokens; this can be accomplished by transmitting tokens
between neighboring nodes of the graph, at a rate of one token per edge per round.
We are particularly interested in local algorithms for this problem: rather than using
a centralized approach to coordinate the movement of tokens, each node will simply

∗A preliminary version of this paper appeared in Proc. 34th Annual ACM Symposium on Theory

of Computing, 2002.
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180. Email:

eanshel@cs.rpi.edu. This research was supported in part by an NSF graduate fellowship.
‡Department of Computer Science, University of Southern California, Los Angeles, CA 90089.

Email: clkempe@usc.edu. This resesarch was supported by an NSF graduate fellowship.
§Department of Computer Science, Cornell University, Ithaca, NY 14853. Email:

kleinber@cs.cornell.edu. Research supported in part by a David and Lucile Packard Founda-
tion Fellowship, an ONR Young Investigator Award, and NSF Faculty Early Career Development
Award CCR-9701399.

1



2 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

compare its load to those of its neighbors, and decide whether to move a token across
an edge based on this information.

This model is clearly very simple in a number of respects, particularly in the
uniformity of the processors (nodes) and jobs (tokens), and the fact that any job can
be executed on any processor. More subtly, it is not even clear in all settings that
balancing load evenly is the optimal strategy in a distributed network of processors
(see, e.g., [12]). At the same time, however, the model cleanly captures the basic
constraints imposed by an underlying interconnection topology in the process of dis-
tributing jobs through a network, as evidenced by the results of previous analysis
[1, 16, 5, 21, 22]; the simplicity of the model allows one to reason very clearly about
the effect of these constraints.

Early work on the model focused on the static version of the problem: each node
is given a set of tokens initially, and nodes must exchange tokens as rapidly as possible
so that they all end up with approximately the same number [1, 16, 5, 22]. However,
load balancing is a natural setting in which to study algorithms designed to run
indefinitely; jobs (tokens) may arrive and depart from the network, and at all times,
the algorithm must maintain an approximately uniform load across nodes. This is a
type of stability condition: no load should diverge arbitrarily from the average as time
progresses. For a number of different models, such dynamic algorithms have been
studied in a probabilistic framework, where one assumes an underlying randomized
process that generates job arrivals and departures; see, e.g., [13, 20] and the references
therein.

An Adversarial Model. Motivated by work in the related area of packet rout-
ing [7, 8, 11, 4], Muthukrishnan and Rajaraman proposed an adversarial framework
for studying dynamic load balancing in the token-based model we have been discussing
[21]. Rather than considering a probabilistic process that generates tokens, they posit
an adversary that is allowed at the beginning of each round to introduce tokens at
some nodes (corresponding to new jobs) and remove tokens from others (correspond-
ing to jobs that have finished). Subsequently, an algorithm is allowed to move tokens
across edges as above so as to try to maintain balanced loads. This alternation of
moves by the adversary and algorithm continues for an arbitrary number of rounds.
Note that by allowing the adversary to control the removal of tokens as well as their
arrival, one is modeling a worst-case assumption that jobs may have arbitrary dura-
tion, and the algorithm does not know how much processing time a job has remaining
until the moment it ends.

If we let at denote the average number of tokens per node in the system at the
beginning of round t, and ht(v) denote the number of tokens at node v (the height of
v) at round t, then the goal of a dynamic load balancing algorithm in this model is to
keep ht(v) close to at for all nodes v and rounds t. Formally, we say that an algorithm
is stable against a given adversary if there is a constant B such that |ht(v) − at| ≤ B
for all nodes v and rounds t. Note that stability in this context imposes a bound on
deviation from the average; it is not required that the actual number of tokens in the
system remain bounded.

As in the case of packet routing [11, 4], one needs to find a suitable restriction
on the adversary: an arbitrarily powerful adversary could flood a particular set of
nodes S ⊆ V with tokens much faster than these nodes can spread the tokens out to
the rest of the graph, and thereby prevent any algorithm from maintaining stability.
This consideration motivates the following natural definition of an adversary [21] with
rate r. For a set S ⊆ V , let e(S) denote the set of edges with exactly one end in S,



STABILITY OF LOAD BALANCING ALGORITHMS 3

and δt(S) the net increase in tokens in set S due to the addition and removal of jobs
in round t (note that δt(S) could be negative). If the heights of nodes in S were
to change precisely according to average, then the net change in tokens in S would
be |S| · (at+1 − at). One wants the difference between these two quantities to be
“accounted for” by the edges in e(S). We say that the adversary has rate r if for all
S ⊆ V , one has

|δt(S) − |S|(at+1 − at)| ≤ r · |e(S)|, (1.1)

For rate r > 1, there are adversaries against which no algorithm (whether online or
offline) can be stable. Muthukrishnan and Rajaraman gave a local-control algorithm
that is stable against all adversaries of rate r, for every r < 1. As an open question,
they asked whether there exists a local-control algorithm that is stable against all
adversaries of rate 1.

The present work. We begin by providing a local-control load balancing al-
gorithm that is stable against every adversary of rate 1, thereby resolving the open
question of Muthukrishnan and Rajaraman. In fact, we show that the following simple
rule has this stability property, for every value of the parameter θ:

At any round t, if the number of tokens on node u exceeds the number
of tokens on its neighbor v by at least θ, then u moves a token to v.

This type of algorithm was considered in earlier work on the static model by Aiello et
al. [1], as well as by many of the subsequent papers. Setting θ = 2∆+1, where ∆ is the
maximum node degree in G, yields the specific algorithm studied by Muthukrishnan
and Rajaraman.

Beyond simply showing the stability of local algorithms at the critical rate r = 1,
our analysis is based on a new proof technique in which a potential function bound is
maintained not only for the entire node set V , but for every subset of V . Compared
to [21], we obtain significantly improved bounds on the deviation from the average,
and a simpler proof. Specifically, we show that the maximum possible deviation from
the average is O(∆n), where n is the number of nodes of G, and this is asymptotically
optimal in the worst case; the analysis in [21] had established a bound of O(∆2n2.5(1−
r)−1) when r < 1. Our analysis also shows stability in a more general model where
edges of G can appear and disappear over time.

Following this, we introduce a multi-commodity version of this load balancing
model. We consider a system in which there are k distinct types of jobs. The jobs
of one given type induce the same load on each processor; but the different types of
jobs place different resource requirements on the nodes, and so we require the load
balancing condition to apply to each type separately. Formally, we have the same
adversarial model as before with a network G and a collection of tokens; but now the
tokens are partitioned into k commodities and the stability requirement must hold
when the tokens of each commodity are considered separately. In a single round, at
most one token in total can be sent across any one edge. (This is in keeping with
the standard multi-commodity notion that constraints at nodes must be satisfied by
each commodity separately, while shared edge capacities must be respected by the
commodities cumulatively.)

We show that the natural rate condition on adversaries — essentially obtained by
summing Equation (1.1) over the commodities — can be related in a precise sense to
the cut condition for standard multi-commodity network flow. As a result, applying
well-known results on the cut condition [17, 18, 19], we find that for every k > 2, there



4 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

is a k-commodity adversary of rate rk ≤ 1 against which no load balancing algorithm
can be stable.

For k = 2, however, the cut condition does not pose an obstacle to having al-
gorithms that are stable all the way up to rate 1. Indeed, we are able to generalize
our first result to show that for 2-commodity load balancing, there is a simple local-
control algorithm that is stable against every adversary of rate 1. We also use the
relationship between adversaries and cut conditions to provide a new proof of Hu’s
Max-Flow Min-Cut Theorem for 2-commodity flow [17]. While our proof is not neces-
sarily shorter than other proofs discovered subsequent to Hu’s [19, 23], it is arguably
more elementary: it does not require linear programming duality (as in [19]) or even
the traditional Max-Flow Min-Cut Theorem for single-commodity flow (as in [23]).

Finally, we further develop the connection between dynamic load balancing and
network flows by extending our analysis to packet routing in the adversarial model
considered by Aiello et al. [2] and Gamarnik [15]. We give an adaptive routing al-
gorithm that is stable against adversaries of rate 1 in the case where packets can be
injected at multiple sources but are destined for a single sink; our algorithm is stable in
a dynamic network model where edges can appear and disappear. A stable algorithm
for this version of the problem was previously given in a recent paper of Awerbuch et
al. [6], using a different, but essentially more general, notion of a dynamic network;
our proof, a direct adaption of the analysis of our single-commodity load balancing
algorithm, is considerably shorter and simpler.

Recent Progress. Since the original publication of this work, several papers
have studied a model wherein nodes can exchange arbitrarily many jobs in one step,
and each node with non-empty load executes one job in each time step. This type
of load-balancing algorithm (often called the diffusion algorithm) has been very well
studied, and is known to have many nice properties, although its behavior in the
presence of an adversary was unknown until recently. In this model, the cut condition
becomes trivial; instead, the adversary is allowed to insert at most n jobs in each time
step, and stability is defined in terms of an upper bound on the load of all nodes.

Berenbrink, Friedetzky, and Golberg [9] show that the work-stealing algorithm,
in which only processors with empty queues request jobs from others, is stable against
adversaries of rate strictly below 1. They assume that processors can request jobs from
any other processor. Anagnostopoulos, Kirsch, and Upfal [3] show the same type of
stability for a local protocol that makes nodes equalize load with their neighbors.
Most recently, Berenbrink, Friedetzky, and Martin [10] proved stability against rate-1
adversaries for a protocol in which nodes exchange load with all their neighbors. Both
the protocol and the analysis are very similar to the ones in the present work.

2. Single-commodity load balancing. In this section, we will study the load
balancing problem for a single commodity, and in particular prove that the natural
balancing algorithm is stable at rate 1, thus settling an open question from [21].
We first define precisely the model and the algorithm, and introduce the necessary
notation.

2.1. Model and Algorithm. The network is represented by a connected undi-
rected graph G = (V, E) with n = |V | nodes. In each round, the adversary first adds
or removes tokens (this is called the Adversary step). Subsequently, in the Redistri-
bution step, up to one token can be moved along each edge e ∈ E by the algorithm
(or up to ce tokens in the case of networks with edge capacities).

The adversary is limited by the following cut condition: For a subset S ⊆ V of



STABILITY OF LOAD BALANCING ALGORITHMS 5

nodes, let δt(S), at, and e(S) be defined as above. Then, the insertion and removal
of tokens by the adversary during round t has to satisfy

|δt(S) − |S|(at+1 − at)| ≤ |e(S)|. (2.1)

Nodes have queues associated with them, in which they store their tokens. The
height ht(v) of a node v is the number of tokens in v’s queue at the beginning of round
t. The imbalance is bt(v) = ht(v) − at, i.e., the number of excess (or missing) tokens
at node v with respect to the average over the entire network. ht(v) and bt(v) denote
the same quantities after the Adversary step of round t.

It is the decision of the algorithm along which edges to send tokens. The goal
of any balancing algorithm is to keep the imbalance bounded for all nodes. If an
algorithm ensures that there is an absolute bound B such that |bt(v)| ≤ B for all
nodes v and all times t, we call the algorithm stable. We will show that the follow-
ing very simple family of local-control algorithms is stable against every adversary
respecting the cut condition. It has a threshold parameter θ ≥ 1, which determines
how aggressively the algorithm balances.

Algorithm SCLBθ

At each time t, for each edge e = (u, v):
If ht(u) ≥ ht(v) + θ, then send a token from u to v.
If ht(v) ≥ ht(u) + θ, then send a token from v to u.

This algorithm does not specify whether tokens are sent along an edge (u, v) when
|ht(u) − ht(v)| < θ. All of our subsequent statements will remain true independently
of what the algorithm does in this case. (Notice that this algorithm only requires local
information, and can therefore be executed in a distributed fashion in a network.)

2.2. Stability of the algorithm. Our main theorem in this section is that
the algorithm SCLBθ is stable against any adversary respecting the cut condition of
Inequality 2.1. We allow for tokens to be in the system at time 1, and let H :=
maxv∈V h1(v).

Theorem 2.1. For any adversary respecting the cut condition, and any θ ≥ 1,
the algorithm SCLBθ is stable, i.e., there is a constant B (depending on H, θ and G),
such that |bt(v)| ≤ B for all nodes v at all times t.

The intuition behind our proof is based on the (incorrect) observation that the
algorithm seems to ensure that the height difference between adjacent nodes cannot
grow beyond θ. Hence, the largest difference between the heights of any two nodes
should be achieved when G is a simple path, and the two nodes are the endpoints of
the path — having a height difference of about nθ.

It is, however, easy to see that the height difference between two adjacent nodes
can become more than θ, because the adversary can “rearrange” the heights within
sets to a certain extent. Imagine, for instance, a long path with the adversary adding
tokens to the first node of the path, until the first node has height nθ, and the height
of each successive node decreases by θ. Then it is possible to rearrange the tokens on
the nodes previously having heights nθ, (n− 1)θ and (n− 2)θ so that they each have
(n − 1)θ tokens, which would result in the height difference of 2θ between the third
and fourth node of the path, since the height of the fourth node remains (n − 3)θ.
The adversary can do this by adding two tokens to the node with height (n− 2)θ and
subtracting one from the node with height nθ for θ successive rounds. During each
Redistribution step of this process, a token will move from the third to the fourth



6 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

node, but these tokens will continue traveling downhill along the path, so that the
height of the fourth node will never grow to be much larger than (n−3)θ. This process
obeys the cut condition, but afterwards, there are two adjacent nodes with almost 2θ
height difference. Fortunately, although there are now more nodes with large heights,
the adversary had to pay for this rearrangement by making the highest queue smaller.
In an amortized sense, the situation has not become worse.

These observations suggest maintaining height bounds for each subset of the
nodes, and showing that these bounds form an invariant. For convenience, we will
write bt(S) =

∑
v∈S bt(v) for any set S ⊆ V of vertices (and similarly for other quan-

tities like ht(S) and δt(S)). With ∆ denoting the maximum degree of any vertex, we
write γ = 2∆ + θ. The key invariant is the following:

|bt(S)| ≤
n∑

j=n−|S|+1

(H + γ · j) for all S ⊆ V. (2.2)

. . . . .

|S|

H

γ

1 2 n

Fig. 2.1. An illustration of Invariant 2.2

Figure 2.1 illustrates the upper bound of this invariant pictorially as the sum of
the column heights of the right-most |S| columns.

Below, we prove Lemma 2.2, showing that Inequality (2.2) is indeed an invariant
over time for the algorithm SCLBθ, against any adversary respecting the cut condition.

Lemma 2.2. If the adversary respects the cut condition, and the invariant (2.2)
holds at the beginning of round t, then it holds at the beginning of round t + 1.

Using this lemma, the proof of Theorem 2.1 is straightforward.

Proof of Theorem 2.1. We prove by induction that (2.2) holds at every time t.
At time 1, h1(v) ≤ H for all v by definition, so

|b1(S)| ≤
∑

v∈S H ≤
∑n

j=n−|S|+1(H + γ · j)



STABILITY OF LOAD BALANCING ALGORITHMS 7

for all sets S ⊆ V . The induction step from t to t + 1 follows from Lemma 2.2, and
we can apply the resulting guarantee to the singleton sets {v}, yielding a bound of
B = H + γ · n. 2

Proof of Lemma 2.2. The proof is by contradiction. Assume that the invariant
(2.2) holds at the beginning of round t, but not at the beginning of round t + 1. Let
S be a set maximizing

Φ(S) := |bt+1(S)| −

n∑

j=n−|S|+1

(H + γ · j).

If several sets achieve the maximum value, let S have minimal size among all these
sets. First off, notice that the choice of S guarantees that either all u ∈ S have positive
bt+1(u), or they all have negative bt+1(u), and hence |bt+1(S)| =

∑
u∈S |bt+1(u)|.

Since (2.2) was assumed to hold at the beginning of round t, and fails at the
beginning of round t + 1, we know that |bt+1(S)| > |bt(S)|. How can the values ht(u)
for nodes u ∈ S change?

Adversary step: Substituting the definitions of b and b, we obtain that for any set S,

|bt(S)| = |ht(S) − |S| · at+1|

= |ht(S) + δt(S) − |S| · at+1|

= |bt(S) + δt(S) − |S| · (at+1 − at)|

≤ |bt(S)| + |δt(S) − |S| · (at+1 − at)|

≤ |bt(S)| + |e(S)|.

The two inequalities hold because of the Triangle Inequality and the cut condition
on the adversary.

Redistribution step: Fix an edge e = (u, v) with u ∈ S and v /∈ S. Because S
maximizes Φ and has minimal size, u has imbalance |bt+1(u)| > H + γ · (n− |S|+ 1),
since otherwise Φ(S − u) ≥ Φ(S). In particular, |bt+1(u)| > γ.

Because v was not included in S, its imbalance bt+1(v) must either have sign
opposite to the sign of bt+1(S), or have absolute value |bt+1(v)| ≤ H + γ · (n − |S|).
In either case, |bt+1(u)− bt+1(v)| > γ, and simply substituting the definition of γ, we
also obtain |ht+1(u) − ht+1(v)| > 2∆ + θ. During the Redistribution step of round t,
at most ∆ tokens can have moved to or from nodes u and v, so their heights can have
changed by at most ∆ each, and therefore their previous height difference is at least
|ht(u) − ht(v)| > θ. Figure 2.2 illustrates the gap of at least γ between the queue
heights of nodes in S and outside S.

If bt+1(u) ≥ 0, then ht(u) − ht(v) > θ, so the algorithm SCLBθ moves a token
from u to v along e, and no tokens from v to u, thereby decreasing bt(u) by 1.
On the other hand, if bt+1(u) < 0, then ht(v) − ht(u) > θ, and a token must be
moved from v to u along e, increasing the (negative) imbalance bt(u) by 1. Because
|bt+1(u)| > γ = θ + 2∆, and therefore |bt(u)| > θ + ∆, the sign of the imbalance does
not change during the Redistribution step, even if ∆ tokens were moved to or from
u, and hence, |bt(u)| decreased by 1 as a result of edge e.

This holds for every edge e ∈ e(S), and using the fact that the average a does not
change during the Redistribution step, we obtain that

|bt+1(S)| =
∑

u∈S |bt+1(u)|

≤ (
∑

u∈S |bt(u)|) − |e(S)|

= |bt(S)| − |e(S)|.



8 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

. . . . .

S

γ

b    (u)t+1

H+γ(n-|S|)

H+γ(n-|S|+1)

Fig. 2.2. The gap of γ between the queue heights of nodes in S and outside S in the case that

bt+1(S) is positive.

Putting the arguments for the two steps together, we obtain that |bt+1(S)| ≤
|bt(S)| − |e(S)| ≤ |bt(S)|. This contradicts our assumption that |bt+1(S)| > |bt(S)|,
and thus completes the proof. 2

Notice that our bound B = H +γ ·n is asymptotically tight. To see this, consider
a simple path of length n. It is certainly legal for the adversary to insert one token

at node n in every round, and never remove tokens. After about θ · n2

2 rounds, each
node k will contain about kθ tokens, and hence the imbalance of node n is about θ · n

2 .

2.3. Capacities, dynamic networks, and time windows. The result of The-
orem 2.1 can be easily extended to the case that the edges have (integer) capacities
ce associated with them, and up to ce tokens can be sent along e in every round. We
assume that whenever the algorithm decides to send tokens from u to v along e, it
sends as many as possible, i.e., bounded only by the capacity ce and the number of
tokens at u. The cut condition now requires that the imbalance created by the adver-
sary be restricted by the total capacity of the cut. Showing that the above algorithm
is still stable in this capacitated version is easy given Theorem 2.1.

Corollary 2.3. In the above capacitated scenario, for any adversary respecting
the cut condition, and any θ ≥ 1, the algorithm SCLBθ is stable, i.e., there is a
constant B (depending on H, θ, G, and the maximum edge capacity maxe ce), such
that |bt(v)| ≤ B for all nodes v at all times t.

Proof. Replace each edge with capacity ce by ce parallel edges of capacity 1. By
Theorem 2.1, the algorithm is stable on this new graph, and therefore, it is also stable
on the capacitated graph. Notice that the constant γ and hence the bound B now
depend on the maximum capacity, and so instead of B = H + 2∆n + θn, the new
bound becomes B = H + 2∆n ·maxe ce + θn, where ∆ is the maximum degree of the
graph. 2



STABILITY OF LOAD BALANCING ALGORITHMS 9

Dynamic networks. Another easy extension concerns dynamically changing net-
works. That is, the set of available edges may change over time, and we assume that
it is also controlled by the adversary. For each time t, we have a set Et of available
edges. The cut condition on the adversary must be satisfied at the specific time when
the imbalance is created, i.e., |δt(S) − |S|(at+1 − at)| ≤ |et(S)|. Here, et(S) are the
edges from Et that have exactly one endpoint in S.

Corollary 2.4. In the above dynamically changing network, for any adversary
respecting the cut condition, and any θ ≥ 1, the algorithm SCLBθ is stable, i.e., there
is a constant B (depending on H, θ, and G), such that |bt(v)| ≤ B for all nodes v at
all times t.

Proof. By syntactically replacing all terms e(S) with et(S) in the proof of Lemma
2.2, we obtain a proof for the model of dynamically changing networks, with exactly
the same bound B. 2

Time windows. An extension often considered in the contexts of load balancing or
packet routing is to relax the restriction on the adversary by allowing it to violate the
cut condition for a certain time, provided that it hold “in the long run”. Specifically, a
window size W is specified, and it is required that for any set S and any time window
[t, t + W ), the imbalance created on set S over that time window be bounded by the

total capacity, i.e., |(
∑t+W−1

r=t δr(S)) − |S|(at+W − at)| ≤ W · |e(S)|.
Corollary 2.5. For any adversary respecting the cut condition on average over

a window size W , and any θ ≥ 1, the algorithm SCLBθ is stable, i.e., there is a constant
B (depending on H, θ, W , and G), such that |bt(v)| ≤ B for all nodes v at all times
t.

Proof. It is not difficult to see that by allowing B to depend on W , we can also
extend the stability result to this model — once the imbalance grows too large on a
set S, all edges e ∈ e(S) will be moving tokens so as to reduce the imbalance for every
single round of an entire window, so that the imbalance cannot grow further. 2

3. Multi-commodity load balancing. In the previous section, we considered
the problem of balancing loads on processors where the loads were interchangeable.
However, we are also interested in the case of different kinds of loads that are to
be balanced simultaneously. For instance, think of jobs that have an emphasis on
different resources of the machine they are running on. Balancing the different classes
of jobs independently could be desirable in order to avoid processing time becoming
a bottleneck on one machine, and memory size an issue on another.

In the general multi-commodity load balancing problem, we have k different kinds
of jobs (or tokens), which are stored in separate queues at the nodes. Our goal is to
ensure an absolute bound on the deviation of any queue height from the average queue
height for that commodity. Each round t is divided into the same two steps as before,
the Adversary step and the Redistribution step.

In analogy to the single-commodity case, we use the following notation: For a

node v and commodity i, let h
(i)
t (v) be the number of tokens of commodity i on node

v at the beginning of round t. Similarly, a
(i)
t , b

(i)
t (v), δ

(i)
t (v), h

(i)

t (v), and b
(i)

t (v) are
all defined for commodity i exactly as their single-commodity equivalents.

The algorithm will now not only have to choose when to send a token across an
edge, but also which of several available (and conflicting) kinds of tokens to send.
Our class of algorithms is practically identical to the one from [2] and [6], and can be
formalized as follows:

Algorithm MCLBθ



10 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

At each time t, for each edge e = (u, v):

Choose i to maximize |h
(i)
t (u) − h

(i)
t (v)|.

If h
(i)
t (u) ≥ h

(i)
t (v) + θ, then send a token of commodity i from u to v.

If h
(i)
t (v) ≥ h

(i)
t (u) + θ, then send a token of commodity i from v to u.

In the case of a single commodity, this algorithm specializes to SCLBθ.
The natural analogue of the cut condition for a single commodity is to require

that the adversary satisfy

∑

i

|δ
(i)
t (S) − |S|(a

(i)
t+1 − a

(i)
t )| ≤ |e(S)| (3.1)

for all node sets S ⊆ V and times t. This would require that the total imbalance for
set S created by the adversary could be “balanced” along edges leaving S.

Unfortunately, Inequality (3.1) is too weak a restriction — it allows the adversary
to create patterns of addition and removal that cannot be balanced by any algorithm,
whether offline or online. At the end of this section, we show how to use a reduction
from the multi-commodity flow problem to create such an adversary with k ≥ 3
commodities.

For the special case k = 2, however, the Max-Flow Min-Cut Theorem still holds,
and in fact, we can show that the cut condition is sufficient to ensure that algorithm
MCLBθ is stable.

3.1. Stability for k=2. We let H = maxv∈V {h
(1)
1 (v) + h

(2)
1 (v)} be the maxi-

mum height of the queues at any node during the start of the execution, and ∆ the
maximum degree of any vertex. This time, we define γ′ slightly differently, namely
γ′ = 2∆ + 2θ.

Theorem 3.1. There is a constant B (depending on H, θ and G), such that for

any adversary respecting the cut condition, MCLBθ ensures |b
(i)
t (v)| ≤ B at all times t,

for all vertices v, and commodities i = 1, 2.

Proof. At the start of the execution, |b
(1)
1 (S)|+ |b

(2)
1 (S)| ≤

∑
v∈S H , by definition

of H . The key Lemma 3.2 establishes that for all S ⊆ V , times t, and commodities
i = 1, 2,

|b
(1)
t (S)| + |b

(2)
t (S)| ≤

n∑

j=n−|S|+1

(H + γ′ · j) (3.2)

We can then apply the result to all singleton sets {v}, proving the theorem. 2

Lemma 3.2. If (3.2) holds at the beginning of round t, it holds at the beginning
of round t + 1.

Proof. The proof is by contradiction. Let S be a set (of minimum size in case of
ties) maximizing

Φ(S) := |b
(1)
t (S)| + |b

(2)
t (S)| −

n∑

j=n−|S|+1

(H + γ′ · j).

In the case of two commodities, a node might be included in S because it contributes
a lot to the imbalance in one of the commodities, although its contribution to the
other commodity might actually be negative. To capture the imbalance contribution

of a node to each commodity, we define the signed imbalance β
(i)
t′ (v) := sgn(b

(i)
t+1(S)) ·



STABILITY OF LOAD BALANCING ALGORITHMS 11

b
(i)
t′ (v), β

(i)

t′ (v) := sgn(b
(i)
t+1(S)) · b

(i)

t′ (v), for every node v ∈ V , and every time step t′.

Here, sgn denotes the sign of a term. Notice that we use the sign of b
(i)
t+1(S) at all

time steps t′ in the definition of β
(i)
t′ (v) (not the sign of b

(i)
t′ (S) or of b

(i)
t′+1(S)). We

can now rewrite the total imbalance over the set S at time t + 1 as

|b
(1)
t+1(S)| + |b

(2)
t+1(S)|=

∑

u∈S

(β
(1)
t+1(u) + β

(2)
t+1(u)). (3.3)

Again, we show that the change in the imbalance for set S cannot be positive,
by comparing the increase in the imbalance of S during the Adversary step with the
decrease during the Redistribution step, and thus obtain a contradiction.

Adversary step: We know that for each commodity i = 1, 2, the imbalance on set S

after the Adversary step is at most |b
(i)

t (S)| ≤ |b
(i)
t (S)|+ |δ

(i)
t (S)−|S| ·(a

(i)
t+1−a

(i)
t )| by

the Triangle Inequality. Now, summing over i = 1, 2 and applying the cut condition
on the adversary yields that

|b
(1)

t (S)| + |b
(2)

t (S)| ≤ |b
(1)
t (S)| + |b

(2)
t (S)| + |e(S)|.

Redistribution step: Fix a node u ∈ S, and an edge e = (u, v) of G with v /∈ S.
As in the proof of Lemma 2.2, we can use the definition of S (as maximizing Φ and
being of minimal size) to obtain that the signed imbalances at nodes u and v satisfy

β
(1)
t+1(u) + β

(2)
t+1(u) > β

(1)
t+1(v) + β

(2)
t+1(v) + γ′. As u and v can lose and gain at most ∆

tokens each during the Redistribution step,

β
(1)

t (u) + β
(2)

t (u) > β
(1)

t (v) + β
(2)

t (v) + 2θ. (3.4)

In particular, there must be a commodity i such that β
(i)

t (u) > β
(i)

t (v) + θ, and

thus also |h
(i)

t (u)− h
(i)

t (v)| > θ. Hence, MCLBθ moved a token along edge e during the
Redistribution step (w.l.o.g., it was a token of commodity 1). We want to show that
this token actually decreased the signed imbalance of node u. Assume that it did not.

This means that if the token moved from u to v, then sgn(b
(1)
t+1(S)) is negative, and if

the token moved from v to u, then sgn(b
(1)
t+1(S)) is positive. In either case, the signed

imbalance for commodity 1 at node v must be higher than at node u, and so

β
(1)

t (v) − β
(1)

t (u) = |b
(1)

t (v) − b
(1)

t (u)| = |h
(1)

t (v) − h
(1)

t (u)|.

Because MCLBθ maximizes the difference in its choice of commodity, we obtain that

β
(1)

t (v) − β
(1)

t (u) = |h
(1)

t (v) − h
(1)

t (u)|

≥ |h
(2)

t (v) − h
(2)

t (u)|

= |β
(2)

t (v) − β
(2)

t (u)|

≥ β
(2)

t (u) − β
(2)

t (v).

Rearranging this inequality yields that

β
(1)

t (v) + β
(2)

t (v) ≥ β
(1)

t (u) + β
(2)

t (u),

and thus a contradiction with Inequality (3.4). Therefore, every edge (u, v) with v /∈ S
decreases the signed imbalance of u by 1. Summing over all edges and all nodes u ∈ S,



12 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

gives us β
(1)
t+1(S)+β

(2)
t+1(S) ≤ β

(1)

t (S)+β
(2)

t (S)−|e(S)|. Using Equation (3.3) and the

fact that β
(1)

t (S) + β
(2)

t (S) ≤ |b
(1)

t (S)| + |b
(2)

t (S)|, we obtain |b
(1)
t+1(S)| + |b

(2)
t+1(S)| ≤

|b
(1)

t (S)| + |b
(2)

t (S)| − |e(S)|.

Combining the arguments for the two steps, |b
(1)
t (S)| + |b

(2)
t (S)| increases by at most

|e(S)| during the Adversary step, and decreases by at least |e(S)| during the Re-

distribution step. Therefore, in total |b
(1)
t+1(S)| + |b

(2)
t+1(S)| ≤ |b

(1)
t (S)| + |b

(2)
t (S)|, a

contradiction. 2

The result for two commodities can be extended to networks with edge capacities,
adversarially changing edge sets, and adversaries with restrictions only for larger
window sizes, just like for the single commodity case.

3.2. Load balancing and flows. By omitting the adversarial and dynamic
nature in the load balancing problem, and forcing the adversary to repeat the same
pattern of token additions in every round, we can infer from the stability of the
load balancing algorithm the existence of a multi-commodity flow. Suppose that we
are given a multi-commodity flow instance with edge capacities ce, source-sink pairs
(si, ti), and demands di. Let D = maxi di, and let A be the adversary inserting, in
every round and for each commodity i, D + di tokens at node si, D − di tokens at
node ti, and D tokens everywhere else.

Lemma 3.3. If there is a load-balancing algorithm that is stable against the
adversary A, then there is a (fractional) multi-commodity flow f with source-sink
pairs (si, ti) and demands di.

Proof. Because we assumed the algorithm to be stable, all imbalances b
(i)
t (v) are

always bounded in absolute value by some constant B. Therefore, there are at most
(2B + 1)kn different combinations of imbalances for the entire network, and so there

must exist two timesteps t and t′ such that t < t′ and b
(i)
t (v) = b

(i)
t′ (v) for all nodes v

and commodities i.

For each edge e = (u, v), let σ
(i)
t (u, v) denote the number of tokens of commodity

i sent from u to v in round t, and define a flow f by

f
(i)
(u,v) :=

1

t′ − t
·

t′−1∑

r=t

(σ(i)
r (u, v) − σ(i)

r (v, u)).

Notice that we define negative flows, but only for symmetry and ease of notation. We
want to verify that f is indeed a feasible multi-commodity flow for demands (si, ti, di).

Capacity constraints: The total flow along any edge (u, v) is

∑

i

|f
(i)
(u,v)| ≤

1

t′ − t
·
∑

i

t′−1∑

r=t

|σ(i)
r (u, v) − σ(i)

r (v, u)|

=
1

t′ − t
·

t′−1∑

r=t

∑

i

|σ(i)
r (u, v) − σ(i)

r (v, u)|

≤
1

t′ − t
·

t′−1∑

r=t

c(u,v)

= c(u,v).



STABILITY OF LOAD BALANCING ALGORITHMS 13

The first inequality is simply the Triangle inequality, and the second inequality holds
because the balancing algorithm never exceeds the capacity of any edge with any of

its token moves, and therefore both σ
(i)
r (u, v) and σ

(i)
r (v, u) lie between 0 and c(u,v).

Flow Conservation: For any node v and commodity i, we can write

(t′ − t)
∑

(u,v)∈E

f
(i)
(u,v)

=
∑

(u,v)∈E

t′−1∑

r=t

(σ(i)
r (u, v) − σ(i)

r (v, u))

=

t′−1∑

r=t

∑

(u,v)∈E

σ(i)
r (u, v) −

t′−1∑

r=t

∑

(u,v)∈E

σ(i)
r (v, u)

= h
(i)
t′ (v) − h

(i)
t (v) −

t′−1∑

r=t

δ(i)
r (v)

= b
(i)
t′ (v) + a

(i)
t′ − b

(i)
t (v) − a

(i)
t − (t′ − t) · δ

(i)
t (v)

= (t′ − t)(D − δ
(i)
t (v)).

The third equality is true because h
(i)
t′ (v) − h

(i)
t (v) is exactly the number of tokens

that entered v during the time period [t, t′ − 1], minus the amount of tokens that left

v during this period. In the last equality, we used that b
(i)
t′ (v) = b

(i)
t (v) for all i and v,

and that a
(i)
r = r·D for all times r. Now, if node v is neither the source nor the sink for

commodity i, then δ
(i)
t (v) = D, so flow is conserved. If v is the source of commodity

i, then δ
(i)
t (v) = D + di, so the total flow entering node si is −di. If v is the sink for

commodity i, then the total flow entering node ti is di, because δ
(i)
t (v) = D − di by

definition. Hence, f satisfies flow conservation and all demands.

f conserves flow, satisfies all demands, and does not exceed any edge capacities,
so it is a feasible multi-commodity flow for the given demands. 2

By combining Lemma 3.3 with the stability of MCLBθ proved in Theorem 3.1, we
obtain as a corollary an alternate proof of the two-commodity Max-Flow Min-Cut
Theorem. It only remains to verify that the adversary A as defined in Lemma 3.3
indeed respects the cut-condition.

Corollary 3.4 (2-Commodity Max-Flow Min-Cut). Let G = (V, E) be a graph
with edge capacities ce, and two demand pairs (s1, t1), (s2, t2) with demands d1, d2

such that for any vertex set S ⊆ V , the total demand of commodities i ∈ {1, 2}
with exactly one of {si, ti} in S is at most

∑
e∈e(S) ce. Then, there exists a feasible

two-commodity flow sending di units of flow from si to ti for i = 1, 2.

Proof. Define the adversary A as in Lemma 3.3. To show that the algorithm
MCLBθ is stable against A, we merely have to verify that A satisfies the cut condition.
Let S ⊆ V be arbitrary. For convenience, we write [u ∈ S] := 1 if u ∈ S, and 0



14 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

otherwise. Then, for any time t
∑

i=1,2

|δ
(i)
t (S) − |S| · (a

(i)
t+1 − a

(i)
t )|

=
∑

i=1,2

||S| · D + [si ∈ S] · di − [ti ∈ S] · di − |S| · D|

=
∑

i=1,2

di · |[si ∈ S] − [ti ∈ S]|.

In the first equality, we used the definition of the insertion pattern for A. The con-
tribution of commodity i to this sum is di if and only if exactly one of si, ti lies in S
— otherwise, it is 0. Hence, the value of the sum is the total demand of commodities
i with exactly one of {si, ti} in S, which by assumption is bounded by

∑
e∈e(S) ce.

Hence, A satisfies the cut condition.
We can therefore apply Theorem 3.1 to obtain that MCLBθ is stable against A,

which in turn implies the existence of a feasible multi-commodity flow f for the given
instance via Lemma 3.3. 2

The 2-Commodity Max-Flow Min-Cut Theorem was first proved by Hu [17], es-
sentially repeating Ford and Fulkerson’s original [14] augmenting paths argument for
two commodities. Seymour [23] showed a short and simple explicit reduction to the
single-commodity case. Subsequently, Linial, London and Rabinovich [19] gave a
novel proof using geometric embeddings and linear programming duality. Our proof
uses yet different (and much more elementary) techniques, and does not rely on the
single-commodity Max-Flow Min-Cut Theorem.

Another corollary we obtain from Lemma 3.3 is the existence of an adversary
respecting the cut condition for k = 3 commodities, such that no algorithm (offline
or online) can balance the insertion pattern. This is not surprising, since load bal-
ancing algorithms (and our algorithm in particular) attempt to generate a flow from
over-loaded nodes to under-loaded nodes, and we know that the best flows can be
significantly worse than the best cuts for more than 2 commodities (i.e., the Max-
Flow Min-Cut Theorem does not hold for k ≥ 3). This means that the constraint on
the adversary is not powerful enough to guarantee the existence of a good flow and
therefore a good algorithm. We make the above discussion precise in the following
corollary.

Corollary 3.5. There exists an adversary respecting the cut condition for k = 3
commodities, such that no algorithm (offline or online) is stable against this adver-
sary.

Proof. To prove this, we simply take a 3-commodity instance with a graph G =
(V, E) and demand pairs (si, ti), i ∈ {1, 2, 3} (with demands di) such that for all cuts
(S, V \S), the total demand across the cut is at most the capacity of the edges crossing
the cut, yet there is no (fractional) multi-commodity flow satisfying all demands. The
first such example for k = 3 was given in [17]. (A simpler well-known example for
k = 4 is the complete bipartite graph K2,3 with a unit demand between every pair of
nodes that are at a distance of 2 from each other.) Let A be the adversary defined from
this instance as in Lemma 3.3. If any load balancing algorithm were stable against
A, Lemma 3.3 would guarantee a feasible multi-commodity flow, a contradiction. 2

The above corollary and Lemma 3.3 illustrate the relation of multi-commodity
flows to load-balancing algorithms, and tell us that the cut condition is not enough to
guarantee the existence of a stable algorithm for k ≥ 3. In Section 5 we will discuss
an alternative approach for a restriction on a multi-commodity adversary.



STABILITY OF LOAD BALANCING ALGORITHMS 15

4. Packet Routing. There is a natural connection between the load balancing
problem studied in the previous sections, and the problem of routing packets in an
adversarial network. It has been observed previously [2, 6] that the natural balancing
algorithm SCLBθ is also stable for packet routing.

The model for packet routing differs from the load balancing one in that after
the Redistribution step, there is an additional Removal step, during which all packets
that have reached their destination are removed from the network. Stability of an
algorithm is now defined as meaning that there is an absolute bound on all queue

heights at all times, i.e., h
(i)
t (v) ≤ B for some constant B.

In the single-commodity packet routing problem, we can again restrict the adver-
sary by a cut condition: the total number δt(S) of packets inserted into a set S must
be at most |e(S)| for any set S not containing the sink of the packets. If S does con-
tain the sink, then there is no restriction. In the multi-commodity case, the adversary
specifies a source si and a sink ti for each packet inserted, and must guarantee that
there is a set of edge-disjoint paths connecting all si-ti pairs.

In [6], it was shown that for the single-commodity case, the algorithm SCLBθ

is stable against an adversary guaranteeing the existence of a path for all packets
inserted, even when edges dynamically appear and disappear. Aiello et. al. [2] proved
that an algorithm essentially equivalent to MCLBθ is stable for the multi-commodity
packet routing problem if the paths specified by the adversary are not only disjoint,
but leave an ε fraction of capacity for every edge unused over a given window length
W . Recently, [?] extended this result to dynamically changing networks.

Our techniques from Section 2 can be used to obtain an alternate (and simpler)
proof for the stability of algorithm SCLBθ in the packet routing model. Our proof also
works for the case of adversarially appearing and disappearing edges, although the
restriction on the adversary is different from (and essentially less general than) the
one in [6].

We define ∆ and H as before, and let γ = 2∆ + θ. Then, the stability of SCLBθ

against an adversary respecting the cut condition is guaranteed by the following the-
orem.

Theorem 4.1. For any time t and set S ⊆ V ,

ht(S) ≤
n∑

j=n−|S|+1

(H + γ · j). (4.1)

Proof. By definition of H , Invariant (4.1) certainly holds at time 1. Assume
that the theorem is wrong, and let t be the earliest time such that there is a set
S violating (4.1) at time t + 1. Among all such sets, let S be the one maximizing
ht+1(S)−

∑n

j=n−|S|+1(H + γ · j), and break ties for minimal size. Then, we can show

as in the proof of Lemma 2.2 that for all nodes u ∈ S, v /∈ S, ht+1(u) > ht+1(v) + γ,
and ht+1(u) > H . In particular, the set S cannot contain the sink (because the sink
contains no tokens after the Removal step).

Therefore, the adversary can have inserted at most |e(S)| tokens into S in the
Adversary step. During the Redistribution step of round t, a token leaves the set S
along each edge e = (u, v) ∈ e(S), because even if u had lost ∆ tokens and v gained
∆ tokens during the Redistribution step, ht(u) would still exceed ht(v) by at least
θ. Taken together, this shows that the number of tokens in S cannot have increased,
contradicting the choice of t and S. 2



16 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

Extensions. Like the proofs in the previous sections, the proof of Theorem 4.1
can be easily extended to deal with dynamically changing networks, edge capacities,
and time windows in the cut condition. In addition, this proof extends to directed
graphs G, if we redefine e(S) in the cut condition to be the edges coming out of S. We
can also show stability for a wider class of single-commodity balancing algorithms.
Specifically, let g : N → N be a function with g(x) ≥ x for all x. The balancing
algorithm SCLBg always sends a token from u to v (and never sends a token from v to
u) if there is an edge e = (u, v) ∈ E and ht(u) > g(ht(v)). It does not matter what
the algorithm does if neither ht(u) > g(ht(v)) nor ht(v) > g(ht(u)). Extending the
above proof only slightly, we obtain that SCLBg is stable for all such functions g. Of
course, the bound B now depends on the rate of growth of g.

Our packet routing results also imply the stability of an interesting load balancing
scenario, which is very similar to the one in [10]. Suppose each node processes one
job per round, so that one token is removed every round from each node with positive
queue height. If the adversary A satisfies the constraint that the number of tokens it
adds to S is at most e(S) + |S|, then we can use Theorem 4.1 to show that the queue
heights are bounded. Consider adding a sink node v to our graph, and add an edge
from every node to v. We can now think of A as adding packets to the new graph,
with v being the packets’ destination. The number of edges coming out of a set S in
the new graph is exactly e′(S) = e(S) + |S|, so A satisfies the condition needed for
Theorem 4.1. It is easy to see that if the queue heights are bounded in this new packet
routing scenario, then they are also bounded in the original load balancing one.

The proofs for Theorem 4.1 and Theorem 2.1 (and the proofs in [2] and [21])
are so similar in nature that one suspects a formal reduction from the packet routing
problem to the load balancing problem (which seems more general). However, we have
not yet been able to determine such a reduction. It would certainly be interesting,
since it would allow us to focus on the load balancing problem in the future.

As with the load balancing problem, we can obtain a multi-commodity flow if
MCLBθ is stable against a suitably defined adversary A. The proof is practically iden-
tical to the one for Lemma 3.3, and we therefore omit it.

Lemma 4.2. Let A be an adversary inserting di tokens of commodity i (whose
destination is ti) into node si in every round. If there is a routing algorithm that is
stable against this adversary, then there is a (fractional) multi-commodity flow f with
source-sink pairs (si, ti) and demands di.

5. Conclusions. In this paper, we have shown that a simple local load-balancing
algorithm is stable against dynamic adversarial addition and removal of jobs in a net-
work, so long as the adversary is bounded by a natural extension of the cut condition
in the sense defined in [21]. This settles an open question from [21]. Our proof
techniques extend to the case of balancing two commodities at once, and to routing
packets injected by an adversary. They yield easier proofs and essentially tight bounds
for the general case. In addition, the stability of the load balancing algorithm for two
commodities gives a new proof of the two-commodity Max-Flow Min-Cut Theorem.

This work leaves open a number of interesting questions. Most importantly,
we would like to be able to show stability of the multi-commodity load balancing
algorithm for an arbitrary number of commodities, both for the problem of routing
packets and balancing loads. If we want to prove stability of load-balancing algorithms
for more commodities, we will have to use a different condition on the adversary. As
a consequence of Lemma 3.3, any reasonable restriction on the adversary will have to
guarantee the existence of multi-commodity flows for all instances where we hope to



STABILITY OF LOAD BALANCING ALGORITHMS 17

prove stability. We therefore suggest the following restriction:

First, define demands d
(i)
t (v) for commodity i, node v and time t by

d
(i)
t (v) := δ

(i)
t (v)− (a

(i)
t+1 − a

(i)
t ). Then, the adversary is restricted to

moves that guarantee the existence of a (fractional) multi-commodity
flow in G satisfying all these demands.

The disadvantage of this condition is that it bears no direct relation to the load
balancing problem — it arises from observing the insufficiency of the more natural
cut condition rather than from having an actual meaning for the problem of balancing
loads. Nevertheless, this condition should be considered the right restriction on the
adversary to measure the quality of MCLBθ or other load balancing algorithms.

Alternatively, we might investigate whether the cut condition is sufficient for
balancing multiple loads if we restrict our attention to specific networks. For example,
it is well known that for trees or cycles, the cut condition implies the existence of
multi-commodity flows, and we might hope that it would hence be sufficient to prove
stability.

Acknowledgments. We thank Martin Pál and Christian Scheideler for valuable
discussions on the subjects of load balancing and adversarial packet routing.

REFERENCES

[1] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao, Approximate load balancing on dynamic

and asynchronous networks, in Proc. 25th ACM Symp. on Theory of Computing, 1993.
[2] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén, Adaptive packet routing for bursty

adversarial traffic, in Proc. 30th ACM Symp. on Theory of Computing, 1998.
[3] A. Anagnostopoulos, A. Kirsch, and E. Upfal, Load balancing in arbitrary network topolo-

gies with stochastic adversarial input, SIAM J. Comput., 34 (2005), pp. 616–639.
[4] D. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, F. Leighton, and Z. Liu, Uni-

versal stability results for greedy contention–resolution protocols, in Journal of the ACM,
vol. 48, 2001, pp. 39–69.

[5] F. M. auf der Heide, B. Oesterdiekhoff, and R. Wanka, Strongly adaptive token distri-

bution, Algorithmica, 15 (1996).
[6] B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler, Simple routing strategies

for adversarial systems, in Proc. 42nd IEEE Symp. on Foundations of Computer Science,
2001.

[7] B. Awerbuch and F. Leighton, A simple local-control approximation algorithm for multi-

commodity flow, in Proc. 34th IEEE Symp. on Foundations of Computer Science, 1993.
[8] , Improved approximation algorithms for the multi-commodity flow problem and local

competitive routing in dynamic networks, in Proc. 26th ACM Symp. on Theory of Com-
puting, 1994.

[9] P. Berenbrink, T. Friedetzky, and L. Goldberg, The natural work-stealing algorithm is

stable, SIAM J. Comput., 32 (2003), pp. 1260–1279.
[10] P. Berenbrink, T. Friedetzky, and R. Martin, Dynamic diffusion load balancing, in Proc.

32nd Intl. Colloq. on Automata, Languages and Programming, 2005, pp. 1386–1398.
[11] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson, Adversarial queue-

ing theory, in Journal of the ACM, vol. 48, 2001, pp. 13–38.
[12] M. Crovella, M. Harchol-Balter, and C. Murta, Task assignment in a distributed system:

Improving performance by unbalancing load, in Proc. ACM Sigmetrics Conf. on Measure-
ment and Modeling of Computer Systems, 1998.

[13] D. Eager, E. Lazowska, and J. Zahorjan, Adaptive load sharing in homogeneous distributed

systems, IEEE Transactions on Software Engineering, 12 (1986).
[14] L. Ford and D. Fulkerson, Maximal flow through a network, Can. J. Math, 8 (1956), pp. 399–

404.
[15] D. Gamarnik, Stability of adaptive and non-adaptive packet routing policies in adversarial

queueing networks, in Proc. 31st ACM Symp. on Theory of Computing, 1999.
[16] B. Ghosh, F. Leighton, B. Maggs, S. Muthukrishnan, C. Plaxton, R. Rajaraman,



18 ELLIOT ANSHELEVICH, DAVID KEMPE, AND JON KLEINBERG

A. Richa, R. Tarjan, and D. Zuckerman, Tight analyses of two local load balancing

algorithms, in Proc. 27th ACM Symp. on Theory of Computing, 1995.
[17] T. Hu, Multi-commodity network flows, Operations Research, 11 (1963).
[18] F. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in de-

signing approximation algorithms, Journal of the ACM, 46 (1999), pp. 787–832.
[19] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorith-

mic applications, Combinatorica, 15 (1995).
[20] M. Mitzenmacher, On the analysis of randomized load balancing schemes, in Proc. 9th ACM

Symp. on Parallel Algorithms and Architectures, 1997.
[21] S. Muthukrishnan and R. Rajaraman, An adversarial model for distributed dynamic load

balancing, in Proc. 10th ACM Symp. on Parallel Algorithms and Architectures, 1998.
[22] D. Peleg and E. Upfal, The token distribution problem, SIAM J. on Computing, 18 (1989).
[23] P. Seymour, A short proof of the two-commodity flow theorem, J. of Combinatorial Theory,

26 (1979).
[24] B. Shirazi, A. Hurson, and K. Kavi, Scheduling and Load Balancing in Parallel and Dis-

tributed Systems, IEEE Computer Society Press, 1995.


