False-Name-Proof Mechanisms for Hiring a
Team

Atsushi Iwasaki', David Kempe?, Yasumasa Saito®,
Mahyar Salek?, and Makoto Yokoo!

! Department of ISEE, Kyushu University, Fukuoka 819-0395, Japan,
{iwasaki@, saitoQagent, yokoo@}is.kyushu-u.ac.jp
Department of Computer Science, University of Southern California, CA
90089-0781, USA, {dkempe, salek}@usc.edu

M

Abstract. We study the problem of hiring a team of selfish agents to
perform a task. Each agent is assumed to own one or more elements of
a set system, and the auctioneer is trying to purchase a feasible solution
by conducting an auction. Our goal is to design auctions that are truth-
ful and false-name-proof, meaning that it is in the agents’ best interest
to reveal ownership of all elements (which may not be known to the
auctioneer a priori) as well as their true incurred costs.We first propose
and analyze a false-name-proof mechanism for the special cases where
each agent owns only one element in reality. We prove that its frugality
ratio is bounded by n2", which nearly matches a lower bound of £2(2")
for all false-name-proof mechanisms in this scenario. We then propose
a second mechanism. It requires the auctioneer to choose a reserve cost
a priori, and thus does not always purchase a solution. In return, it is
false-name-proof even when agents own multiple elements. We experi-
mentally evaluate the payment (as well as social surplus) of the second
mechanism through simulation.

1 Introduction

In the problem of hiring a team of agents [1-3], an auctioneer knows which
subsets of agents can perform a complex task together, and needs to hire such
a team (called a feasible set of agents). Since the auctioneer does not know the
true costs incurred by agents, we assume that the auctioneer will use an auction
to elicit bids. A particularly well-studied special case of this problem is that of a
path auction [1,4—6]: the agents own edges of a known graph, and the auctioneer
wants to purchase an s-t path.

Selfish agents will try to maximize their profit, even if it requires misrepre-
senting their incurred cost or their identity. Thus, the auctioneer should design
the auction to be truthful, i.e., making it in agents’ best interest to reveal actual
costs and ownership. The area of designing such auctions is known as mechanism
design [6-8]. Most recent results on truthful mechanism design have focused on
discouraging misrepresentation of costs. However, as recently pointed out by
Yokoo et al. in the context of combinatorial auctions [9,10], a second threat is



that of false-name manipulations, in which agents owning multiple elements of
the underlying set system invent “pseudo-agents” in order to pretend that all
these agents must be paid, leading to higher total payments.

1.1 Our contributions

We introduce a model of false-name manipulation in auctions for hiring a team,
such as s-t path auctions. In this model, the set system structure and element
ownership are not completely known to the auctioneer. Thus, in order to increase
profit, an agent who owns an element can pretend that the element is in fact a
set consisting of multiple elements owned by different agents. Similarly, an agent
owning multiple elements can submit bids for these elements under different
identities. We call a mechanism false-name-proof if it is truthful, and a dominant
strategy is for each agent to reveal ownership of all elements.

Our first main contribution is a false-name-proof mechanism MP for the
special case in which each agent owns exactly one element. This mechanism
introduces an exponential multiplicative penalty against sets in the number of
participating agents. We show that its frugality ratio (according to the definition
of Karlin et al. [5]) is at most n2" for all set systems of n elements, which nearly
matches a worst-case lower bound of 2(2™) we establish for every false-name-
proof mechanism.

When agents may own multiple elements, we present an alternative mecha-
nism AP, based on an a priori chosen reserve cost r and additive penalties. The
mechanism is false-name-proof in the general setting, but depends crucially on
the choice of r, as it will not purchase a solution unless there is one whose cost
(including the penalty) is at most r. We investigate the AP mechanism exper-
imentally for s-t path auctions on random graphs, observing that AP provides
social surplus not too far from a Pareto-efficient one at an appropriate reserve
cost.

1.2 Related Work

If false-name bids are not a concern, then it has long been known that the VCG
mechanism gives a truthful mechanism and identifies the Pareto optimal solution.
As the payments of VCG can be significantly higher than the cheapest alternative
solution, several papers [1,3-5] have investigated the frugality of mechanisms:
the overpayment compared to a natural lower bound. In particular, [5] presents
a mechanism called the , / mechanism achieving frugality ratio within a constant
factor of optimal for s-t path auctions in graphs.

The issue of false-name bids was recently studied in combinatorial auctions
and several special cases by Yokoo et al. [11-14,9], who developed false-name-
proof mechanisms in those scenarios, but also proved that no mechanism can
be both false-name-proof and Pareto efficient. Notice that the false-name-proof
mechanisms for combinatorial procurement auctions given in [12,13] cannot be
applied in our setting, as they assume additive valuations on the part of the
auctioneer, i.e., that the auctioneer derives partial utility from partial solutions.



A somewhat similar scenario arises in job scheduling, where users may split or
merge jobs to obtain earlier assignments. Moulin [15] gives a mechanism that
is strategy-proof against both merges and splits and achieves efficiency within
a constant factor of optimum. However, when agents can exchange money, no
such mechanism is possible [15].

For the specific case of path auctions, the impact of false-name bids was re-
cently studied by Du et al. [16]. They showed that if agents can own multiple
edges, then there is no false-name-proof and efficient mechanism. Furthermore,
if bids are anonymous, i.e., agents do not report any identity for edge ownership,
then no mechanism can be strategy-proof. Notice that this does not preclude
false-name-proof and truthful mechanisms in which the auctioneer takes own-
ership of multiple edge by the same agent into account, and rewards the agent
accordingly.

2 Preliminaries

Our framework is based on that of [1,17,5,3]. A set system (E,F) is specified
by a set E of n elements and a collection F C 2F of feasible sets. For instance,
in the important special case of an s-t path auction, S € F if and only if S is an
s-t path.

Agents can own multiple elements, and A? denotes an element of a partition
A of E and the set of elements owned by agent i. An owned set system, i.e., a
set system with ownership structure, is specified by ((E,F), A). Each element
e has an associated cost c, the true cost that its owner o(e) will incur if e is
selected by the mechanism.® This cost is private, i.e., known only to o(e). An
auction consists of two steps:

1. Each agent 7 submits sealed bids (b., 0(e)) for elements e, where 6(e) denotes
the identifier of e’s purported owner (which need not be the actual owner).
2. Based on the bids, the auctioneer uses an algorithm that is common knowl-
edge among the agents in order to select a feasible set S* € F as the winner
and compute a payment p; for each agent i with an element e such that
i = 0(e). We say that the elements e € S* win, and all other elements lose.

The profit of an agent i is the sum of all payments she receives, minus the
incurred cost ¢(S* N A?). Each agent is only interested in maximizing her profit,
and might choose to misrepresent ownership or costs to this end. However, we
assume that agents do not collude. If agents report correct ownership for all
e € A?, then a mechanism is truthful by definition if for any fixed vector b~% of
bids by all agents other than i, it is in agents i’s best interest to bid b, = c.
for all e € A%, i.e., agent e’s profit is maximized by bidding b, = ¢, for all these
elements e.

% For costs, bids, etc., we extend the notation by writing ¢(S) =3
Y ees be, ete.

ceg Ce and b(S) =



In this paper, we extend the study of truthful mechanisms to take into ac-
count, false-name manipulation: agents claiming ownership of non-existent el-
ements (which we call self-division) or choosing not to disclose ownership of
elements (which we call identifier splitting).

Definition 1 (Identifier Splitting [9,10]). An agent i owning a set A* may
choose to use different identifiers in her bid for some or all of the elements.
Formally, the owned set system ((E,F),A) is replaced by ((E,F), A"), where
A = A\ {AYU{A"YU{A"}, and A = A" U A7,

Definition 2 (Self-Division). An agent i owning element e is said to self-
divide e if e is replaced by two or more elements ey, ..., e, and different owners
are reported for the e;. Formally, the owned set system ((E,F),A) is replaced
by (E',F'), A", whose elements are E' = E \ {e} U {e1,...,er}, such that
the feasible sets F' are exactly those sets S not containing e, as well as sets
S\{e}U{ei,...,er} for all feasible sets S € F containing e. The ownership
structure is A% = {e;} for j =1,... k, where each i; is a new agent.

Intuitively, self-division allows an agent to pretend that multiple distinct
agents are involved in doing the work of element e, and that each of them must
be paid separately. For self-division to be a threat, there must be uncertainty
on the part of the auctioneer about the true set system (E,F). In particular,
it is meaningless to talk about a mechanism for an individual set system, as
the auctioneer does not know a priori what the set system is. Hence, we define
classes of set systems closed under subdivision, as the candidate classes on which
mechanisms must operate.

Definition 3. 1. For two set systems (E,F) and (E',F'), we say (E',F") is
reachable from (E,F) by subdivisions if (E', F') is obtained by (repeatedly)
replacing individual elements e € E with {e1,...,ex}, such that the feasible
sets F' are exactly those sets S not containing e, as well as sets S\ {e} U
{e1,...,er} for all feasible sets S € F containing e.

2. A class C of set systems is closed under subdivisions iff with (E,F), all set
systems reachable from (E,F) by subdivisions are also in C.

For example, s-t path auction set systems are closed under subdivisions, whereas
minimum spanning tree set systems are not (because subdivisions would intro-
duce new nodes that must be spanned).

In both identifier splitting and self-division, we will sometimes refer to the
new agents i’ whose existence i invents as pseudo-agents. A mechanism is false-
name-proof if it is a dominant strategy for each agent i to simply report the
pair (c.,1) as a bid for each element e € A*. Thus, neither identifier splitting nor
self-division nor bids b. # c. can increase the agent’s profit. Among other things,
this allows us to use b, and ¢, interchangeably when discussing false-name-proof
mechanisms. Notice that we explicitly define the concept of false-name-proof
mechanisms to imply that the mechanism is also truthful when each agent i
owns only one element.



Efficiency and Frugality

A mechanism is Pareto efficient if it always maximizes the sum of all participants’
utilities (including that of the auctioneer). While it is well known that the VCG
mechanism is truthful and Pareto efficient, Du et al. [16] show that there is
no Pareto efficient and false-name-proof mechanism, even for s-t path auctions.
Yokoo et al. [10] showed the same for combinatorial auctions.

While Pareto efficient mechanisms maximize social welfare, they can sig-
nificantly overpay compared to other mechanisms [5]. In order to analyze the
overpayment, we use the definition of frugality ratio from [5].

Definition 4 ([5]). Let (E,F) be a set system, and S the cheapest feasible set
with respect to the true costs c. (where ties are broken lexicographically). For any
vector of costs ¢ for elements, we define v(c) to be the solution to the following
optimization problem.

Minimize ), g
(1) be > c. for all e

(2) b(S\T) <c(T\S) forallT €F

(3) For every e € S, there is a T, € F such that e ¢ T, and b(S\T.) = ¢(T: \ S)

be subject to

This definition essentially captures the payments in a “cheapest Nash Equi-
librium” of a first-price auction, and gives a natural lower bound generalizing
second-lowest cost for comparison purposes.

Definition 5. The frugality of a mechanism M for a set system (E,F) is

b = sup, L)

i.e., the worst case, over all cost vectors c, of the overpayment compared to
the “first-price” payments. Here, pp(c) denotes the total payments made by M
when the cost vector is c.

3 A Multiplicative Penalty Mechanism

We present a mechanism MP based on exponential multiplicative penalties. It is
false-name-proof for arbitrary classes of set systems closed under subdivisions,
so long as each agent only owns one element. We can therefore identify elements
e with agents. Since we assume each agent owns exactly one element, A is au-
tomatically determined by E, so we can focus on set systems instead of owned
set systems. After the agents submit bids b, for elements, MP chooses the set
S* minimizing b(S) - 21511, among all feasible sets S € F. Each agent e € S* is
then paid her threshold bid 2!5™“I1=157Ip(S=¢) — b(S* \ {e}), where S~¢ denote
the best solution (with respect to the objective function b(S) - 2!51=1) among
feasible sets S not containing e. Notice that while this selection may be NP-hard
in general, it can be accomplished in polynomial time for path auctions, by using
the Bellman/Ford algorithm to compute the shortest path for each number of
hops, and then comparing among the at most n such shortest paths.



Theorem 1. For all classes of set systems closed under subdivision, MP is false-
name-proof, so long as each agent only owns one element. Furthermore, it has
frugality ratio O(n - 2™), where n = |E|.

Proof. If an agent e = ¢q self-divides into £+ 1 elements ey, . .., e, then either
all of the e; or none of them are included in any feasible set S. Thus, we can
always think of just one threshold 74 (e) for the self-divided agent e: if the sum
of the bids of all the new elements e; exceeds 74 (e), then e loses; otherwise, it is
paid at most (k + 1)7x(e). The original threshold of agent e is 7(e) = 1o(e).

The definition of the MP mechanism implies 74 (e) < 27 %7(e). If e still wins
after self-division (otherwise, there clearly is no incentive to self-divide), the total
payment to e is at most (k+1)2~F7(e). The alternative of not self-dividing, and
submitting a bid of 0, yields a payment of 7(e) > (k+1)27*7(e). Thus, refraining
from self-division is a dominant strategy. Given that no agent will submit false-
name bids, the monotonicity of the selection rule implies that the mechanism is
incentive compatible, and we can assume that b, = ¢, for all agents e.

To prove the upper bound on the frugality ratio, consider again any winning
agent e € S*. Her threshold bid is 7(e) = minge r..¢r ATI=1S"e(T) — e(S*\ {e}),
and the total payment is the sum of individual thresholds for S*,

pup(€) = X e s minger.eer 271157 e(T) — ¢(S*\ {e})
S 2" ZeES* minTef:e¢T C(T)

Let S be the cheapest solution with respect to the c,, i.e., without regard to
the sizes of the sets. By Definition 4, v(c) = ZEES be, subject to the constraints
of the mathematical program given. Focusing on any fixed agent €', we let T¢s
denote the set from the third constraint of Definition 4, and can rewrite

v(c) = Zeesze, be + ZeeSmTe, be = EeeTeHS Ce + ZeeTemS be > c(Ter).

Since this inequality holds for all €', we have proved that v(c) > max.cg ¢(T%).
On the other hand we can further bound the payments by

2" ) cge Mingeregr ¢(T) < n2" max.cs: minpe regr c(T)
< n2" maxees minge regr ¢(T)
< n2"maxees c(Te).

Here, the second-to-last inequality followed because for all e € S* \ S, the
minimizing set T is actually equal to S, and therefore cannot have larger cost
than ¢(T) for any e € S, by definition of S. Thus, the frugality ratio of MP is

_ pmp (c) n2" maxees c(Te) _
dup = supe BT < Sty =2 .

3.1 An Exponential Lower Bound

An exponentially large frugality ratio is not desirable. Unfortunately, any mech-
anism which is false-name-proof will have to incur such a penalty, as shown by
the following theorem.



Theorem 2. Let C be any class of monopoly free set systems closed under sub-
divisions, and M be any truthful and false-name-proof mechanism for C. Then,
the frugality ratio of M on C is 2(2") for set systems with |E| = n.

Proof. Let (Ey, Fp) € C be a set system minimizing |Ep|. Let S* € Fy be the
winning set under M winning when all agents e € Ey bid 0, and let e € S* be
arbitrary, but fixed. Because (Ey, Fp) is monopoly free, there must be a feasible
set T' € Fy with e ¢ T and T' ¢ S*. Among all such sets T', let T be the one
minimizing |S*UT, and let é in T, be arbitrary. Define Z = T, US*\ {e, é} (the
“zero bidders”), and I = Ep \ (T. U S*) (the “infinity bidders”). Consider the
following bid vector: both e and é bid 1, all agents e’ € Z bid 0, and all agents
e’ € I bid co . Let W be the winning set. We claim that W must contain at least
one of e and é (w.l.o.g., assume that e € W). For W cannot contain any of the
infinity bidders. And if it contained neither e nor é, then W would have been a
candidate for T, with smaller |IW U S*|, which would contradict the choice of Tt.

Now, let (Eg, F) be the set system resulting if agent e self-divides into new
agents eo, ..., e, for k > 0. Define 7(j, k), for j = 0,...,k, to be the threshold
bid under M for agent e; in the set system (Ej, F}), given that all e’ € Z bid
0, all ¢ € I bid oo, and all e; for 7 # j also bid 0, while é bids 1. Above, we
thus showed that 1 < 7(0,0) < co. We now show by induction on d that for all
d, there exists an h < d such that

2= (i k) > SR (i k + d).

The base case d = 0 is trivial. For the inductive step, assume that we have
proved the statement for d. Because M is truthful, the payment of an agent is
exactly equal to the threshold bid, so each agent i is paid 7(i, k+d) in the auction
on the set system (Fgiq, Fr1q) with the bids as given above. If agent ¢ were to
self-divide into two new agents, the new set system would be (Eitd+1, Fitd+1),
and the payment of agent i (who is now getting paid as two pseudo-agents 7 and
i+ 1) would be 7(i,k+d+ 1)+ 7(i + 1,k + d+ 1). Because M was assumed to
be false-name-proof, it is not in the agent’s best interest to self-divide in such a
way, L.e., 7(i,k+d) > 7(i,k+d+1)+7(i+1,k+d+1). Summing this inequality
over all agents ¢ = h,...,h + k, we obtain

St k+d) > S (i k+d+ 1) + 76+ Lk +d+1))
=Yk +d+1) + X (i k+ d+ 1),

Define ¢ = 0 if E:f,f (i, k+d+1) < Ef;fj_rll 7(i,k + d + 1); otherwise, let
£ = 1. Then, the above inequality implies that

Sk d) > 2 ik 4 d + 1),

Finally, setting h' := h + ¢, we can combine this inequality with the induction
hypothesis to obtain that

2=+ Sk r(i k) > S ri k+ d+ 1),

2



which completes the inductive proof.

Applying this equation with & = 0, we obtain that for each d > 0, there exists
an h < d such that 7(h,d) < 2-¢-7(0,0). Thus, in the set system (Eg, Fy), if all
infinity bidders have cost oo, agent h has cost just above 2797(0,0), and all other
agents have cost 0, then agent € must be in the winning set, and must be paid at
least 1. But it is easy to see that in this case, v(c) = 2797(0,0), and the frugality
ratio is thus at least 2¢/7(0,0) = 2(2%) (since 7(0,0) is a constant independent
of d). Finally, |E4| = |Z|+ |I| + d + 1, and because Z and I are constant for our
class of examples, the frugality ratio is 2-(Z1+1T1=1) .27 /7(0,0) = 2(2"). |

4 An Additive Penalty Mechanism with Reserve Cost

We next propose and analyze a mechanism called AP, based on additive penalties
and a reserve cost. It will only purchase a solution when the total cost (including
penalties) does not exceed the a priori chosen reserve cost r, and thus requires
a judicious choice of r by the auctioneer. In return, AP is false-name-proof even
when agents own multiple elements.

For any set S € F, let w(S) denote the number of (pseudo-)agents owning
one or more elements of S, called the width of the set S. The width-based penalty
for a set S of width w is D,.(w) = % -r. Based on the actual costs and the
penalty, we define the adjusted cost of a set S to be 3(S) = b(S) + D,.(w(S)).

The AP mechanism first determines the set S* minimizing the adjusted cost
B(S), among all feasible sets S € F. If its adjusted cost exceeds the reserve cost
r, then AP does not purchase any set, and does not pay any agents. Otherwise,
it chooses S*, and pays each winning agent (i.e., each agent i with S* N A® # ()
her threshold bid p; = min(r, 3(S~%)) — (b(S* \ A") + D,.(w(S*))) with respect
to B(S). Here, S—* denotes the best solution with respect to 3(S) such that S—¢
contains no elements from A°’.

4.1 Analysis of AP

In this section, we prove that simply submitting the pair (b.,7) for each element
e € A’ is a dominant strategy for each agent ¢ under the mechanism AP. Fur-
thermore, we prove that the payments of the AP mechanism never exceed r.
As a first step, we prove that it never increases an agent’s profit to engage in
identifier splitting.

Lemma 1. Suppose that agent i owns elements A*, and splits identifiers into
i',i", with sets A", A" |, such that A* UA* = A*. Then, the profit agent i obtains
after splitting is no larger than that obtained before splitting.

Proof. Let S* € F be the winning set prior to agent ’s identifier split. We first
consider the case when the winning set does not change due to the identifier split.
If only one of the new pseudo-agents i',¢" wins (say, i'), then ,B(S’i’) < B(S7H,
because every feasible set not using elements from A? also does not use elements
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from A?. Hence, the payment of ¢ could only decrease, and we may henceforth
assume that both i’ and " win, which means that the width of the winning set
S* increases from w to w + 1.

For simplicity, we write B~ = min(r, 3(S~%)), and similarly for i’ and i".
The payment to i before the split is B~% — (b(S* \ A?) + D,(w)), whereas the
new payment after the split is

B " —(b(8*\ A") + Dp(w+ 1))+ B~ — (b(S* \ A”') + D, (w + 1))
=B~ + B~ —2b(S*) + b(S* N AY) — 2D,.(w + 1).

As argued above, we have that B~ < B, and by definition of B~ we
also know that B~ < r. Thus, canceling out penalty terms, the increase in
payment to agent i is bounded from above by

B +B " —B 7 —b(S*)—r<r+B i —B i —b(S*) —r=—b(S*) <0.

Hence, identifier splitting can only lower the payment of agent i. Since the total
cost incurred by agent i stays the same, this proves that there is no benefit in
identifier splitting.

Next, suppose that the winning set after the split changes to S™ # S*.
Clearly, if i does not win at all after the split, i.e., S"* N A = (J, then 4 has no
incentive to split identifiers. Otherwise, if ¢ does win after the split, then ¢ must
also win before the split. For the split can only increase D, (w(S)) for all sets S
containing any of i’s elements, while not affecting D, (w(S)) for other sets. We
can assume w.l.o.g. that agent i bids co on all elements e € A"\ S™*. For the
winning set will stay the same, because §(S™) stays the same, and 3(S) can
only increase for other sets S, and the payments can only increase.

But then, S will also be the winning set if ¢ does not split identifiers (the
adjusted cost 3(S"™*) decreases, while all other adjusted costs stay the same).
Now, we can apply the argument from above to show that the payments to
agent ¢ do not increase as a result of splitting identifiers. Thus, so long as an
agent can submit bids of false cost instead, it is never a dominant strategy to
split identifiers. [ |

Theorem 3. For all classes of set systems closed under subdivision, AP is false-
name-proof, even if agents can own multiple elements and split identifiers. Thus,
for each agent i, submitting bids (c.,i) for each element e € A' is a dominant
strategy.

Proof. First, notice that if an agent owns two elements in the winning solution,
AP does not treat the agent differently from if she only owned one element. Thus,
the proof of Lemma 1 also shows that self-division can never be beneficial for
an agent, and we can assume from now on that no agent will self-divide or split
identifiers. Thus, each agent i submits bids (b.,4) for all elements e € A?. If the
set S* € F wins under AP, agent i’s utility is

pi — c(S* NAT) = B~ — (b(S* \ A%) + Dp(w(S*)) + ¢(S* N A)).
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Since B~ is a constant independent of the bids b(e) by agent i, agent i’s utility
is maximized when (b(S*\ 4") + D,.(w(S*)) + ¢(S* N A")) is minimized. But this
is exactly the quantity that AP will minimize when agent i submits truthful bids
for all her elements; hence, truthfulness is a dominant strategy. [ ]

The next theorem proves that an auctioneer with a reserve cost of r faces no
loss.

Theorem 4. The sum of the payments made by AP to agents never exceeds r.

Proof. Because we already proved that AP is false-name-proof, we can without
loss of generality identify c(e) and b(e) for each element e. When w agents are
part of the winning set S*, the payment to agent 7 is

pi=B7" = (c(S*\ AY) + Dy (w)) <7 — (e(S*\ AY) +1 = 55=1) = 51

Thus, the sum of all payments to agents i is at most w - 5= < 7. [ ]

4.2 Experiments

Since the AP mechanism does not always purchase a feasible set, we cannot
analyze its frugality ratio in the sense of Definition 5. (The definition is based
on the assumption that the mechanism always purchases a set.) Instead, we
complement the analysis of the previous section with experiments for shortest
s-t path auctions on random graphs. Our simulation compares the payments of
the AP mechanism with VCG, under the assumption that there is in fact no
false-name manipulation and each agent owns one edge. Thus, we evaluate the
overpayment caused by preventing false-name manipulation.

Since some of our graphs have monopolies, we modify VCG by introducing a
reserve cost r. Thus, if S* is the cheapest solution with respect to the cost, the
reserve-cost VCG mechanism (RVCG) only purchases a path when ¢(S*) < r. In
that case, the payment to each edge e € S* is p, = min(r,¢(S™¢)) — c(S*\ {e}),
where S™¢ is the cheapest solution not containing e.

Our generation process for random graphs is as follows: 40 nodes are placed
independently and uniformly at random in the unit square [0,1]%. Then, 200
independent and uniformly random node pairs are connected with edges.* The
cost of each edge e is its Euclidean length. We evaluate 100 random trials; in
each, we seek to buy a path between two randomly chosen nodes. While the
number of nodes is rather small compared to the real-world networks on which
one would like to run auctions, it is dictated by the computational complexity
of the mechanisms we study. Larger-scale experiments are a fruitful direction for
future work.

Figure 1 shows the average social surplus (the difference between the reserve
cost and the true cost incurred by edges on the chosen path, r—3_ . c.) in AP

* We also ran simulations on random small-world networks [18]. Our results for small-
world networks are qualitatively similar, and we therefore focus on the case of uni-
formly random networks here.
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Fig. 1. The evaluation results of social sur- Fig. 2. The evaluation results of payments.
plus.

and RVCG, as well as the ratio between the two, when varying the reserve cost
r € [0,3.5]. The social surplus for both increases roughly linearly under both
mechanisms. While the plot shows some efficiency loss by using AP, it is always
within a factor of about 60% for our instances, and on average around 80%.

Figure 2 illustrates the average payments of the auctioneer. Clearly, small
reserve costs lead to small payments, and when the reserve costs are less than
1.8, the payment of AP is in fact smaller than that of RVCG. As the reserve cost r
increases, RVCG’s payments converge, while those of AP keep increasing almost
linearly. The reason is that the winning path in AP tends to have fewer edges
than other competing paths, and is thus paid an increased bonus as r increases.
We would expect such behavior to subside as there are more competing paths
with the same number of edges.

5 Open Questions

It remains open whether there is a mechanism which always purchases a solution,
and is false-name-proof even when each agent has multiple elements. This holds
even for such seemingly simple cases as s-t path auctions. It may be possible
that no such mechanism exists, which would be an interesting result in its own
right. The difficulty of designing false-name-proof mechanisms for hiring a team
is mainly due to a lack of useful characterization results for incentive-compatible
mechanisms when agents have multiple parameters. While a characterization of
truthful mechanisms has been given by Rochet [19], this condition is difficult to
apply in practice.

It would also be desirable to get the bounds in Section 3 to match asymp-
totically, i.e., to either remove the factor n from the upper bound, or tighten
the lower bound accordingly. The latter may be difficult, as it is likely at least
as difficult as designing a truthful mechanism for all set systems with frugality
ratio within a constant factor of optimum. Thus, even progress on this question
for specific classes of set systems would be desirable.
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