
CS 271 (Spring 2013) — Assignment 2

Due: 01/31/2013

This homework is to be done in groups of 3 students, assigned randomly by the program posted on the
course web site. Each group can only turn in one solution, with all students’ names listed on it. The group
composition is posted at http://www-bcf.usc.edu/~dkempe/CS271/team-assignments-2.html.

(1) Read Chapter 3. (The material of Section 3.1 is not directly what we cover here, but the section sets
the backdrop for our analysis; some of Section 3.3 goes beyond what we’ll cover here, but you may find
it interesting nonetheless. On the other hand, we’ll discuss counting steps a little more precisely.)

(2) Attend a sherpa session this week. Preferably, that would be the one you’re assigned to, but it doesn’t
have to be. This week, sherpas will be taking attendance. Your group will receive credit based on how
many of you were at your sherpa sessions.

(3) Find examples in the real world (and outside of the analysis of the running time or memory requirements
of algorithms) of the following.

(a) Quadratic growth: That is, find some quantity x that is naturally measured in (non-negative)
real numbers or integers, and some other quantity that naturally is of the form Θ(x2). Explain
where the quadratic growth comes from.

(b) Exponential growth: This time, the first quantity t should be time. In other words, find some
real-world phenomenon such that its value evolves over time (roughly) as Θ(at) for some a > 1.
Explain what units you are measuring time in (seconds? years? microseconds?), and give a rough
estimate of the value of a. Since exponential growth is very fast, use your form to estimate
roughly when in the future (or in the past — you’re welcome to consider something that grows
exponentially into the past) this exponential growth must stop. If it works for your example, try
to explain/guess what real-world constraints/facts would stop exponential growth at that point.
(For instance, the explanation could be: “For reason XYZ, the simple mathematical model I used
will not be correct any more at that point,” or “At that point, the world will indeed have a serious
problem,” or “The laws of physics will mean that at a particular earlier point, the growth will
stop”.)

(c) Growth that is naturally neither linear, nor quadratic nor exponential. Give an expression for the
growth, and explain where it comes from. (This one does not have to be a function of time.)

(4) Solve the following exercises from the textbook

(a) Section 3.2, Exercises 8, 14, 24, 26, 30, 42

(b) Section 3.3, Exercises 4, 8, 12, 16, 26, 46

(5) [0 points]
Chocolate Problem (2 chocolate bars): One of the things that one frequently needs to do with
collections of sets is the following. You have a ground set (or universe U) of size n = |U |, and
throughout the process, U is partitioned into a bunch of sets S1, S2, (Partitioned means that the
sets are pairwise disjoint, so Si ∩Sj = ∅ whenever i 6= j, and

⋃
i Si = U . So each element of U appears

in exactly one set.) You start out with each element of U in a set just by itself. Then, you repeatedly
merge sets, until eventually, you are left with just one set S1 = U , which contains all elements. More
precisely, what happens is the following: you get a sequence of m requests, where each request k is
of the form (uk, vk), giving you two elements uk, vk ∈ U . Then, if uk and vk are already in the same
set, you do nothing. But if they are in different sets Si, Sj , then you merge Si and Sj into a new set
Si ∪Sj , and instead remove Si and Sj from your collection of sets. You’ll hopefully learn in CS271 (or

1

http://www-bcf.usc.edu/~dkempe/CS271/team-assignments-2.html

otherwise in CS303) why this kind of stuff — which probably sounds a little artificial right now — is
actually important.

Here is a data structure that lets you implement this quite efficiently. For each element u ∈ U , you
keep two things: a number s[u] (which is initialized to 1), and a pointer p[u], which is initialized as the
null pointer. When you get a request (uk, vk), you start from uk: if its pointer is null, you stop there;
otherwise, you follow its pointer to a new node. If that node’s pointer is null, you stop; otherwise,
you follow its pointer, and so on, until you end up at a node u′

k whose pointer is null. You do the
same starting from vk, arriving eventually at a node v′k whose pointer is null. If u′

k = v′k, you do
nothing (because uk and vk were already in the same set). Otherwise, you compare s[u′

k] to s[v′k]. If
s[u′

k] ≤ s[v′k], then you reassign p[u′

k] = v′k; otherwise, you reassign p[v′k] = u′

k. In either case, you
reassign both s[u′

k] and s[v′k] to s[u′

k] + s[v′k] (i.e., you sum the previous values).

Show that for any sequence of m merge requests, the total time of this algorithm will be O(m log n).1

(Hint: Doing one or two example runs probably will help you. Think first about what the su capture,
and then think about how long a chain of pointers the algorithm ever has to follow, and why?)

1In fact, with a slight optimization to the previous algorithm, this becomes O(m log∗ n), where log∗ n is the number of times
you have to take the log starting at n until you hit 1. (That’s a really slow-growing function.) But analyzing the modified
algorithm would be more like a 10-chocolate bar problem.

2

